Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivated by a DNA methylation application, this article addresses the problem of fitting and inferring a multivariate binomial regression model for outcomes that are contaminated by errors and exhibit extra-parametric variations, also known as dispersion. While dispersion in univariate binomial regression has been extensively studied, addressing dispersion in the context of multivariate outcomes remains a complex and relatively unexplored task. The complexity arises from a noteworthy data characteristic observed in our motivating dataset: non-constant yet correlated dispersion across outcomes. To address this challenge and account for possible measurement error, we propose a novel hierarchical quasi-binomial varying coefficient mixed model, which enables flexible dispersion patterns through a combination of additive and multiplicative dispersion components. To maximize the Laplace-approximated quasi-likelihood of our model, we further develop a specialized two-stage expectation-maximization (EM) algorithm, where a plug-in estimate for the multiplicative scale parameter enhances the speed and stability of the EM iterations. Simulations demonstrated that our approach yields accurate inference for smooth covariate effects and exhibits excellent power in detecting non-zero effects. Additionally, we applied our proposed method to investigate the association between DNA methylation, measured across the genome through targeted custom capture sequencing of whole blood, and levels of anti-citrullinated protein antibodies (ACPA), a preclinical marker for rheumatoid arthritis (RA) risk. Our analysis revealed 23 significant genes that potentially contribute to ACPA-related differential methylation, highlighting the relevance of cell signaling and collagen metabolism in RA. We implemented our method in the R Bioconductor package called "SOMNiBUS."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.10149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!