At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy and arduous approach of stable single-cell clones. Here, we used an alternative approach, a stable cell pool that takes only weeks to generate compared to a stable single-cell clone that needs several months to complete. We employed the membrane, envelope, and highly immunogenic spike proteins of SARS-CoV-2 to produce virus-like particles (VLPs) using the HEK293-F cell line as a host system with an economical transfection reagent. The cell pool showed the stability of protein expression for more than one month. We demonstrated that the production of SARS-CoV-2 VLPs using this cell pool was scalable up to a stirred-tank 2 L bioreactor in fed-batch mode. The purified VLPs were properly assembled, and their size was consistent with the authentic virus. Our particles were functional as they specifically entered the cell that naturally expresses ACE-2. Notably, this work reports a practical and cost-effective manufacturing platform for scalable SARS-CoV-2 VLPs production and chromatographic purification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209123PMC
http://dx.doi.org/10.3390/vaccines12060561DOI Listing

Publication Analysis

Top Keywords

cell pool
16
virus-like particles
8
particles vlps
8
approach stable
8
stable single-cell
8
sars-cov-2 vlps
8
cell
6
production
5
sars-cov-2
5
vlps
5

Similar Publications

Pharmacological Mechanisms of Bile Acids Targeting the Farnesoid X Receptor.

Int J Mol Sci

December 2024

Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China.

Bile acids (BAs), a category of amphiphilic metabolites synthesized by liver cells and released into the intestine via the bile duct, serve a vital role in the emulsification of ingested fats during the digestive process. Beyond their conventional emulsifying function, BAs, with their diverse structures, also act as significant hormones within the body. They are pivotal in facilitating nutrient absorption by interacting with the farnesoid X receptor (FXR), and they serve as key regulators of lipid and glucose metabolism, as well as immune system balance.

View Article and Find Full Text PDF

Fibrotic focus is a pivotal morphofunctional unit in developing fibrosis in various tissues. For most fibrotic diseases, including progressive forms, the foci are considered unable to remodel and contribute to the worsening of prognosis. Unfortunately, the dynamics of the fibrotic focus formation and resolution remains understudied.

View Article and Find Full Text PDF

The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.

View Article and Find Full Text PDF

Eastern Finnic populations, including Karelians, Veps, Votes, Ingrians, and Ingrian Finns, are a significant component of the history of Finnic populations, which have developed over ~3 kya. Yet, these groups remain understudied from a genetic point of view. In this work, we explore the gene pools of Karelians (Northern, Tver, Ludic, and Livvi), Veps, Ingrians, Votes, and Ingrian Finns using Y-chromosome markers (N = 357) and genome-wide autosomes (N = 67) and in comparison with selected Russians populations of the area (N = 763).

View Article and Find Full Text PDF

To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary muscle fibers began forming at 40 days of gestation, fully developed by 11 weeks, and secondary muscle fibers were predominantly formed by around 105 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!