Traditional metal-plastic dissimilar welding methods directly heat the metal workpiece, which may cause potential thermal damage to the metal workpiece. Ultrasonic extruded weld-riveting (UEWR) is a relatively new method for dissimilar joining of carbon fiber-reinforced thermoplastic (CFRTP) and metal. In this method, the CFRTP workpiece is melted using the ultrasonic effect and is squeezed into prefabricated holes in the metal workpiece to form a rivet structure. In this method, the metal workpiece is not directly heated, and potential high-temperature losses can be avoided. This paper investigates the process characterizations of UERW of AZ31B magnesium alloy to carbon fiber-reinforced PA66. The process parameters are optimized by the Taguchi method. The joint formation process is analyzed based on the fiber distribution in the cross-sections of joints. The effects of welding parameters on the joint microstructure and fracture surface morphology are discussed. The results show that a stepped amplitude strategy (40 μm amplitude in the first stage and 56 μm amplitude in the second stage) could balance the joint strength and joint appearance. Insufficient (welding energy < 2600 J or amplitude-A < 50%) or excessive (welding energy > 2800 J or amplitude-A > 50%) welding parameters lead to the formation of porous defects. Three fracture modes are identified according to the fracture surface analysis. The maximum tensile shear strength of joints at the optimal parameters is about 56.5 ± 6.2 MPa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207440 | PMC |
http://dx.doi.org/10.3390/polym16121749 | DOI Listing |
Molecules
December 2024
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia Republic.
Electrochemical Drilling (ECD) is an unconventional method aimed at creating holes in metallic workpieces characterized by high hardness and complex structures. This study analyzes the influence of process variables, including machining voltage, electrolyte concentration, electrode rotational speed, electrolyte flushing pressure, and workpiece material, on the novel hole performance index (HPI) in electrical discharge machining (ECD). The HPI was identified as a suitable metric for simultaneously evaluating hole geometry and drilling time across various machining parameters and workpiece materials.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
This study analyses a set of phenomena occurring in the burnished surface layer at the initial moment of deformation formation. The aim of the present research was to explain the phenomena occurring in the top layer of the material during burnishing. The presented analyses include selected laboratory and experimental studies of the process involved in forming burnished surface layers.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
J Colloid Interface Sci
February 2025
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!