In the current research, we prepared a polymeric framework, {[Cu(CO)(CHN)]·HO·0.67(CHOH)]} () (where CO = oxalic acid; CHN = 2,2-bipyridine), and explored this compound for adsorption of methylene blue (MB) and methyl orange (MO). The crystal structure of the compound consists of a Cu(ox)(bpy) unit connected via oxalate to form a 1D polymeric chain. This polymeric chain has adsorption capacities of 194.0 and 167.3 mg/g for MB and MO, respectively. The removal rate is estimated to be 77.6% and 66.9% for MB and MO, respectively. The plausible mechanisms for adsorption are electrostatic, π-π interaction, and OH-π interaction for dye stickiness. The adsorbent surface exhibits a negative charge that produces the electrostatic interaction, resulting in excellent adsorption efficiency at pH 7 and 8. The pseudo-first-order kinetic model is selected for the adsorption of MB and MO on the adsorbent. The reported compound has remarkable efficiency for sorption of organic dyes and can be useful in wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207973PMC
http://dx.doi.org/10.3390/polym16121742DOI Listing

Publication Analysis

Top Keywords

organic dyes
8
polymeric chain
8
adsorption
6
oxalato-bridged cuii-based
4
cuii-based polymer
4
polymer chain
4
chain synthesis
4
synthesis structure
4
structure adsorption
4
adsorption organic
4

Similar Publications

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!