Carbon fiber-reinforced plastic (CFRP) is frequently utilized as a bolted joint material in aircraft applications because of its high specific strength and specific modulus. Therefore, the performance of CFRP under -50° is significant. Here, we discuss the specimens of two bolted connections (single-nailed and double-nailed) used for static load tensile and tensile fatigue tests. We obtained the failure curves and fatigue life relationships of the specimens with two different connection methods at different tightening torques (2 N/m, 4 N/m, and 6 N/m) and low room temperatures. Our analysis reveals the effect of the bolt tightening torque and temperature on the structural mechanical properties of a CFRP bolted joint. It provides a data reference for researchers to design a composite bolted joint structure in an airplane flight environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207908PMC
http://dx.doi.org/10.3390/polym16121715DOI Listing

Publication Analysis

Top Keywords

bolted joint
12
mechanical properties
8
carbon fiber-reinforced
8
fiber-reinforced plastic
8
bolted connections
8
n/m n/m
8
bolted
5
properties carbon
4
plastic types
4
types bolted
4

Similar Publications

Corrosion damage presents significant challenges to the safety and reliability of connected vehicles. However, traditional non-destructive methods often fall short when applied to complex automotive structures, such as bolted lap joints. To address this limitation, this study introduces a novel corrosion monitoring approach using Lamb wave-based weighted fusion imaging methods.

View Article and Find Full Text PDF

The impact of rock bolts on the mechanical behavior of nonpersistent joints, including the intricate interactions between the joints, rock bridges, and rock bolts, has received limited investigation despite their effectiveness in reinforcing rock mass discontinuities. In order to tackle this issue, a variety of normal stresses were applied during direct shear tests conducted on artificial rock-like specimens with nonpersistent joints, both bolted and unbolted. Meanwhile, to measure the deformation in the rock bridge and joint plane region, a set of strain gauges were implemented.

View Article and Find Full Text PDF

C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design.

View Article and Find Full Text PDF

Laminated composite bolted joints are increasingly used in the aerospace field, and their damage and failure behavior has been studied in depth. In view of the complexity and stability requirements of laminated composite bolted structures, accurate prediction of damage evolution and failure behavior is significant to ensure the safety and reliability of the structures. In this paper, a novel asymptotic damage model is developed to predict the damage process and failure behavior of laminated composite bolted joints.

View Article and Find Full Text PDF

In the literature on rotating machinery, many articles discuss the analysis of various rotor and bearing defects, including both sliding and rolling bearings. Defects in the rotor supporting system are investigated much less frequently. In rotor-bearing-supporting structure systems, where there are couplings between the individual sub-systems, damage to the supporting structure can significantly impact the dynamic properties of the entire machine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!