AI Article Synopsis

  • PLA is a strong but brittle bioplastic, while PHBH offers better ductility and compostability, suggesting a complementary use in blends.
  • Adding PBAT can improve the ductility of PLA, but blends like PLA/PBAT tend to have lower mechanical strength due to poor dispersion of materials.
  • The best performance was observed with PLA/PHBH blends, particularly with a PLA75/PHBH25 mixture, achieving high tensile strength due to its favorable morphology.

Article Abstract

While the brittle polylactide (PLA) has a high durability among bioplastics, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) with certain ductility exhibits facile compostability. The addition of polybutylene adipate terephthalate (PBAT) may also be used to improve the ductility and toughness of brittle bioplastics. Binary and ternary blends of PLA/PBAT/PHBH based on either PLA or PHBH as the matrix have been manufactured using a twin-screw extruder. The melt rheological, mechanical, and morphological properties of the processed samples were examined. Binary blends of PLA/PHBH show superior strength, with the PLA75/PHBH25 blend exhibiting a tensile strength of 35.2 ± 3.0 MPa, which may be attributed to miscible-like morphology. In contrast, blends of PLA with PBAT demonstrate low strength, with the PLA50/PBAT50 blend exhibits a tensile strength of 9.5 ± 2.0 MPa due to the presence of large droplets in the matrix. PBAT-containing blends exhibit lower impact strengths compared to PHBH-containing blends. For instance, a PLA75/PBAT25 blend displays an impact strength of 1.76 ± 0.1 kJ/m, whereas the PHBH75/PBAT25 blend displays an impact strength of 2.61 ± 0.3 kJ/m, which may be attributed to uniformly dispersed PBAT droplets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207277PMC
http://dx.doi.org/10.3390/polym16121699DOI Listing

Publication Analysis

Top Keywords

binary ternary
8
ternary blends
8
blends pla/pbat/phbh
8
tensile strength
8
blend displays
8
displays impact
8
impact strength
8
blends
6
strength
6
tuning structure-property
4

Similar Publications

A theoretical comparison of different third component content in ternary organic solar cells.

Phys Chem Chem Phys

January 2025

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.

Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations.

View Article and Find Full Text PDF

The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).

View Article and Find Full Text PDF

A First-Principles Thermodynamic Model for the Ba-Zr-S System in Equilibrium with Sulfur Vapor.

ACS Appl Energy Mater

December 2024

Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.

The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.

View Article and Find Full Text PDF

The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.

View Article and Find Full Text PDF

Introduction: Thymoma classification is challenging due to its diverse morphology. Accurate classification is crucial for diagnosis, but current methods often struggle with complex tumor subtypes. This study presents an AI-assisted diagnostic model that combines weakly supervised learning with a divide-and-conquer multi-instance learning (MIL) approach to improve classification accuracy and interpretability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!