Self-vibrating systems obtaining energy from their surroundings to sustain motion can offer great potential in micro-robots, biomedicine, radar systems, and amusement equipment owing to their adaptability, efficiency, and sustainability. However, there is a growing need for simpler, faster-responding, and easier-to-control systems. In the study, we theoretically present an advanced light-actuated liquid crystal elastomer (LCE) fiber-mass system which can initiate self-sliding motion along a rigid circular track under constant light exposure. Based on an LCE dynamic model and the theorem of angular momentum, the equations for dynamic control of the system are deduced to investigate the dynamic behavior of self-sliding. Numerical analyses show that the theoretical LCE fiber-mass system operates in two distinct states: a static state and a self-sliding state. The impact of various dimensionless variables on the self-sliding amplitude and frequency is further investigated, specifically considering variables like light intensity, initial tangential velocity, the angle of the non-illuminated zone, and the inherent properties of the LCE material. For every increment of π/180 in the amplitude, the elastic coefficient increases by 0.25% and the angle of the non-illuminated zone by 1.63%, while the light intensity contributes to a 20.88% increase. Our findings reveal that, under constant light exposure, the mass element exhibits a robust self-sliding response, indicating its potential for use in energy harvesting and other applications that require sustained periodic motion. Additionally, this system can be extended to other non-circular curved tracks, highlighting its adaptability and versatility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207362PMC
http://dx.doi.org/10.3390/polym16121696DOI Listing

Publication Analysis

Top Keywords

circular track
8
liquid crystal
8
crystal elastomer
8
lce fiber-mass
8
fiber-mass system
8
constant light
8
light exposure
8
light intensity
8
angle non-illuminated
8
non-illuminated zone
8

Similar Publications

Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal , + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed circular dichroism.

View Article and Find Full Text PDF

Lately, important advancements in visualizing RNAs in fixed and live cells have been achieved. While mRNA imaging techniques are well-established, the development of effective methods for studying non-coding RNAs (ncRNAs) in living cells are still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase-transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper.

View Article and Find Full Text PDF

Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).

View Article and Find Full Text PDF

Background: Eye movement research serves as a critical tool for assessing brain function, diagnosing neurological and psychiatric disorders, and understanding cognition and behavior. Sex differences have largely been under reported or ignored in neurological research. However, eye movement features provide biomarkers that are useful for disease classification with superior accuracy and robustness compared to previous classifiers for neurological diseases.

View Article and Find Full Text PDF

Background: Prior research has shown a strong association between anxiety and envy (i.e. benign/malicious envy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!