A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of Oriented Strand Board Made of Heat-Treated Bamboo ( (Schult.) Backer) Strands. | LitMetric

This study aimed to analyze the effect of pre-heat treatment on bamboo strand properties and its impact on the properties of the resulting bamboo-oriented strand board (BOSB). Giant bamboo ( (Schult.) Backer) with a density of 0.53 g cm was converted into bamboo strands. These strands were pre-heat-treated at 140 and 160 °C for a duration of 1, 2, and 3 h. Changes in the chemical composition of the strand due to subsequent treatment were assessed. Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction analysis (XRD) were used to determine the changes in the chemical composition of bamboo strands. The BOSB panels were produced with a target density of 0.7 g cm. The manufacturing of the BOSB was conducted in three layers with a ratio of 25:50:25, bonded with phenol-formaldehyde resin. The physical and mechanical properties of the laboratory-fabricated BOSB were tested in compliance with the criteria given in JIS A 5908 standards. Comparisons were made against OSB CSA 0437.0 Grade O-1 commercial standard. The pre-heat treatment led to chemical alterations within the material when set at 140 and 160 °C for 1 to 3 hours (h). FTIR spectral analysis demonstrated that longer exposure and higher temperatures resulted in fewer functional groups within the bamboo strands. The increased temperature and duration of pre-heat treatment enhanced the crystallinity index (CI). The dimensional stability and mechanical properties of the composites were improved significantly as hemicellulose and extractive content were reduced. This study demonstrated that the pre-heat treatment of bamboo strands at a temperature of 160 °C for a duration of 1 h was an adequate approach for heat modification and fabrication of BOSB panels with acceptable properties according to OSB CSA 0437.0 Grade O-1 commercial standard.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207221PMC
http://dx.doi.org/10.3390/polym16121692DOI Listing

Publication Analysis

Top Keywords

pre-heat treatment
16
bamboo strands
16
160 °c
12
strand board
8
bamboo schult
8
schult backer
8
treatment bamboo
8
140 160
8
°c duration
8
changes chemical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!