This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207696 | PMC |
http://dx.doi.org/10.3390/polym16121672 | DOI Listing |
Tissue Eng Part A
January 2025
Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Adipose tissue engineering requires effective strategies for regenerating adipose tissue, with adipose-derived stem cells (ASCs) being favored due to their robust self-renewal capacity and multipotent differentiation potential. In this study, the efficacy of poly-L-lactic acid (PLLA) mesh containing collagen sponge (CS), seeded with ASCs to promote adipose tissue formation, was investigated. PLLA-CS implants seeded with GFP-positive ASCs were inserted at high concentration (1 × 10 cells/implant, H-ASC) and low concentration (1 × 10 cells/implant, L-ASC), as were unseeded controls.
View Article and Find Full Text PDFData Brief
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
Tenofovir alafenamide (TAF) is currently administered orally to patients for treatment of chronic hepatitis B virus infection and as a part of a combination therapy for human immunodeficiency virus (HIV) infection. A long-acting delivery system could provide several advantages as a formulation strategy for this drug including improved patient adherence, convenience, more consistent drug levels and potentially fewer side effects. To date, the vast majority of polymer-based long-acting delivery systems have been prepared from poly(lactide--glycolide) [1].
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
College of Medicine, Department of Dermatology, Imam Mohammad Ibn Saud University, Riyadh, Saudi Arabia.
Background: Acne is a common condition observed in adolescents and in most severe acne the scars develop. There are numerous treatment options for acne scars. However, no standardized guidelines have been established to guide physicians in the optimal treatment of acne scars.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China.
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!