The Potential of Sugarcane Waste-Derived Cellulose Fibres as Haemostatic Agents.

Polymers (Basel)

Australian Institute for Bioengineering and Nanotechnology, Corner College and Cooper Roads, The University of Queensland, Brisbane, QLD 4072, Australia.

Published: June 2024

Haemorrhage control during surgery and following traumatic injury remains a critical, life-saving challenge. Cellulose products are already employed in commercially available haemostatic dressings. This work explores sourcing cellulose from sugarcane trash pulp to produce micro- and nanosized fibres with hydroxyl, carboxylic acid, and trimethylamine functional groups, resulting in either positive or negative surface charges. This paper assesses the influence of these fibres on multiple blood clotting parameters in both dispersed solutions and dry gauze applications. In vitro blood clotting studies demonstrated the significant haemostatic potential of cellulose fibres derived from sugarcane waste to initiate clotting. Plasma absorbance assays showed that the 0.25 mg/mL cellulose microfibre dispersion had the highest clotting performance. It was observed that no single property of surface charge, functionality, or fibre morphology exclusively controlled the clotting initiation measured. Instead, a combination of these factors affected clot formation, with negatively charged cellulose microfibres comprising hydroxyl surface groups providing the most promising result, accelerating the coagulation cascade mechanism by 67% compared to the endogenous activity. This difference in clot initiation shows the potential for the non-wood agricultural waste source of cellulose in haemostatic wound healing applications, contributing to the broader understanding of cellulose-based materials' versatility and their applications in biomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207806PMC
http://dx.doi.org/10.3390/polym16121654DOI Listing

Publication Analysis

Top Keywords

cellulose fibres
8
blood clotting
8
cellulose
7
clotting
5
potential sugarcane
4
sugarcane waste-derived
4
waste-derived cellulose
4
fibres
4
haemostatic
4
fibres haemostatic
4

Similar Publications

Degradable and cost-effective cellulose fiber-based materials are ideal substitutes for traditional plastics. However, organic additives used to enhance water and oil resistance often contain toxic substances that may migrate into food, posing health risks. In this study, inspired by tree structures, lignin-containing cellulose nanofibers (LCNFs) are used to form a "crown-roots" structure to enhance the water, oil, and gas resistance, as well as mechanical performance of composites.

View Article and Find Full Text PDF

Multicomponent self-assembly represents a cutting-edge strategy in peptide nanotechnology, enabling the creation of nanomaterials with enhanced physical and biological characteristics. This approach draws inspiration from the highly complex nature of the native extracellular matrix (ECM) constituting multicomponent biomolecular entities. In recent years, the combination of bioactive peptide with polymer has gained significant attention for the fabrication of novel biomaterials due to their inherent specificity, tunable physiochemical properties, biocompatibility, and biodegradability.

View Article and Find Full Text PDF

Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes.

Nanomicro Lett

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.

Amidst the ever-growing interest in high-mass-loading Li battery electrodes, a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways. Here, we propose cellulose elementary fibrils (CEFs) as a class of deagglomerated binder for high-mass-loading electrodes. Derived from natural wood, CEF represents the most fundamental unit of cellulose with nanoscale diameter.

View Article and Find Full Text PDF

Enhancing Syagrus romanzoffiana lignocellulosic fibers' properties by ecological treatment with sodium bicarbonate for applications in sustainable lightweight biocomposites.

Int J Biol Macromol

January 2025

Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria.

Investigating the fascinating world of natural fibers, where Syagrus romanzoffiana fibers (SrFs) are promising substitutes for glass and synthetic fibers in composite materials, is more than interesting. The improvement of SrFs through an environmentally friendly treatment employing sodium bicarbonate (NaHCO₃) at different concentrations (5 %, 10 %, 20 %, and 30 % by weight) over various durations (24, 72, and 168 h) is the subject of this study. The objective is to provide a sustainable and economical approach to enhancing fiber characteristics.

View Article and Find Full Text PDF

The increasing demand for sustainable resources has revived the research on cellulose over the last decades. Therefore, the current research focused on the synthesis of biopolymers for the development of viable tableware utensils from cellulose of coconut coir. The synthesized biopolymer was characterized by using Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile strength, and contact angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!