Many physical and chemical properties of solids, such as strength, plasticity, dispersibility, solubility and dissolution are determined by defects in the crystal structure. The aim of this work is to study in situ dynamic, dispersion, chemical, biological and surface properties of lacosamide powder after a complete cycle of mechanical loading by laser scattering, electron microscopy, FR-IR and biopharmaceutical approaches. The SLS method demonstrated the spontaneous tendency toward surface-energy reduction due to aggregation during micronisation. DLS analysis showed conformational changes of colloidal particles as supramolecular complexes depending on the loading time on the solid. SEM analysis demonstrated the conglomeration of needle-like lacosamide particles after 60 min of milling time and the transition to a glassy state with isotropy of properties by the end of the tribochemistry cycle. The following dynamic properties of lacosamide were established: elastic and plastic deformation boundaries, region of inhomogeneous deformation and fracture point. The ratio of dissolution-rate constants in water of samples before and after a full cycle of loading was 2.4. The lacosamide sample, which underwent a full cycle of mechanical loading, showed improved kinetics of API release via analysis of dissolution profiles in 0.1 M HCl medium. The observed activation-energy values of the cell-death biosensor process in aqueous solutions of the lacosamide samples before and after the complete tribochemical cycle were 207 kJmol and 145 kJmol, respectively. The equilibrium time of dissolution and activation of cell-biosensor death corresponding to 20 min of mechanical loading on a solid was determined. The current study may have important practical significance for the transformation and management of the properties of drug substances in solid form and in solutions and for increasing the strength of drug matrices by pre-strain hardening via structural rearrangements during mechanical loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207894PMC
http://dx.doi.org/10.3390/pharmaceutics16060798DOI Listing

Publication Analysis

Top Keywords

mechanical loading
20
properties lacosamide
8
cycle mechanical
8
full cycle
8
loading
7
properties
6
lacosamide
6
mechanical
5
cycle
5
influence mechanical
4

Similar Publications

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.

View Article and Find Full Text PDF

The excavation of the super-large cross-section tunnel portal section is prone to causing serious engineering distresses. The key factors to ensure the safe construction of portal section are to clarify the construction mechanic characteristics and select a reasonable construction scheme. In this paper, a bidirectional six-lane expressway tunnel in Southwest China was selected as an engineering case.

View Article and Find Full Text PDF

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Nanostructural Analysis of Age-Related Changes Affecting Human Dentin.

Calcif Tissue Int

January 2025

Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.

Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!