Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is species, generally transmitted in the hematophagous act of female sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on and while outlining the nanotechnology green synthesis and current malaria prevention strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206820 | PMC |
http://dx.doi.org/10.3390/pharmaceutics16060699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!