Health assessment and preventive maintenance of structures are mandatory to predict injuries and to schedule required interventions, especially in seismic areas. Structural health monitoring aims to provide a robust and effective approach to obtaining valuable information on structural conditions of buildings and civil infrastructures, in conjunction with methodologies for the identification and, sometimes, localization of potential risks. In this paper a low-cost solution for structural health monitoring is proposed, exploiting a customized embedded system for the acquisition and storing of measurement signals. Experimental surveys for the assessment of the sensing node have also been performed. The obtained results confirmed the expected performances, especially in terms of resolution in acceleration and tilt measurement, which are 0.55 mg and 0.020°, respectively. Moreover, we used a dedicated algorithm for the classification of recorded signals in the following three classes: noise floor (being mainly related to intrinsic noise of the sensing system), exogenous sources (not correlated to the dynamic behavior of the structure), and structural responses (the response of the structure to external stimuli, such as seismic events, artificially forced and/or environmental solicitations). The latter is of main interest for the investigation of structures' health, while other signals need to be recognized and filtered out. The algorithm, which has been tested against real data, demonstrates relevant features in performing the above-mentioned classification task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207466PMC
http://dx.doi.org/10.3390/s24124023DOI Listing

Publication Analysis

Top Keywords

structural health
8
health monitoring
8
low-cost sensing
4
sensing solution
4
solution shm
4
shm exploiting
4
exploiting dedicated
4
dedicated approach
4
approach signal
4
signal recognition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!