The security of the Industrial Internet of Things (IIoT) is of vital importance, and the Network Intrusion Detection System (NIDS) plays an indispensable role in this. Although there is an increasing number of studies on the use of deep learning technology to achieve network intrusion detection, the limited local data of the device may lead to poor model performance because deep learning requires large-scale datasets for training. Some solutions propose to centralize the local datasets of devices for deep learning training, but this may involve user privacy issues. To address these challenges, this study proposes a novel federated learning (FL)-based approach aimed at improving the accuracy of network intrusion detection while ensuring data privacy protection. This research combines convolutional neural networks with attention mechanisms to develop a new deep learning intrusion detection model specifically designed for the IIoT. Additionally, variational autoencoders are incorporated to enhance data privacy protection. Furthermore, an FL framework enables multiple IIoT clients to jointly train a shared intrusion detection model without sharing their raw data. This strategy significantly improves the model's detection capability while effectively addressing data privacy and security issues. To validate the effectiveness of the proposed method, a series of experiments were conducted on a real-world Internet of Things (IoT) network intrusion dataset. The experimental results demonstrate that our model and FL approach significantly improve key performance metrics such as detection accuracy, precision, and false-positive rate (FPR) compared to traditional local training methods and existing models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207654 | PMC |
http://dx.doi.org/10.3390/s24124002 | DOI Listing |
Theranostics
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Computer Science, Tongling University, Tongling, 244061, China.
The application of artificial neural networks (ANNs) can be found in numerous fields, including image and speech recognition, natural language processing, and autonomous vehicles. As well, intrusion detection, the subject of this paper, relies heavily on it. Different intrusion detection models have been constructed using ANNs.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computing and Information Technology, University of Bisha, Bisha, Bisha, 61922, Saudi Arabia.
Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Software, Faculty of Artificial Intelligence and Software, Gachon University, Seongnam-si, 13120, Republic of Korea.
Network security is crucial in today's digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!