Design of an Electromagnetic Micro Mirror Driving System for LiDAR.

Sensors (Basel)

Key Laboratory of MEMS of Ministry of Education, Southeast University, Si-Pai-Lou 2, Nanjing 210096, China.

Published: June 2024

Electromagnetic micro mirrors are in great demand for light detection and ranging (LiDAR) applications due to their light weight and low power consumption. The driven frequency of electromagnetic micro mirrors is very important to their performance and consumption. An electromagnetic micro mirror system is proposed in this paper. The model of the system was composed of a micro mirror, an integrated piezoresistive (PR) sensor, and a driving circuit was developed. The twisting angle of the mirror edge was monitored by an integrated PR sensor, which provides frequency feedback signals, and the PR sensor has good sensitivity and linearity in testing, with a maximum of 24.45 mV/deg. Stable sinusoidal voltage excitation and frequency tracking was realized via a phase-locked loop (PLL) in the driving circuit, with a frequency error within 10 Hz. Compared with other high-cost solutions using PLL circuits, it has greater advantages in power consumption, cost, and occupied area. The mechanical and piezoresistive properties of micro mirrors were performed in ANSYS 19.2 software. The behavior-level models of devices, circuits, and systems were validated by MATLAB R2023a Simulink, which contributes to the research on the large-angle deflection and low-power-consumption drive of the electromagnetic micro mirror. The maximum optical scan angle reached 37.6° at 4 kHz in the behavior-level model of the micro mirror.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207503PMC
http://dx.doi.org/10.3390/s24123969DOI Listing

Publication Analysis

Top Keywords

electromagnetic micro
20
micro mirror
20
micro mirrors
12
micro
8
power consumption
8
driving circuit
8
mirror
6
design electromagnetic
4
mirror driving
4
driving system
4

Similar Publications

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

Nat Commun

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.

View Article and Find Full Text PDF

Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

We present a model for the noise and inherent stochasticity of fluorescence signals in both continuous wave (CW) and time-gated (TG) conditions. When the fluorophores are subjected to an arbitrary excitation photon flux, we apply the model and compute the evolution of the probability mass function (pmf) for each quantum state comprising a fluorophore's electronic structure, and hence the dynamics of the resulting emission photon flux. Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!