In this paper, we investigate a scenario in which protected and unprotected services coexist in an elastic optical network under dynamic traffic. In the investigated scenario, unprotected services can reuse the reserved idle bandwidth to provide protection to the protected services. Under this scenario, we propose a new heuristic algorithm that enables such reuse as well as define and introduce a new assignment problem in elastic optical networks, named a Transmission Spectrum Assignment (T-SA) problem. In this paper, we consider a scenario in which services may be routed using the multipath routing approach. Additionally, protection using bandwidth squeezing is also considered. We assess our proposal through simulations on three different network topologies and compare our proposal against the classical protection approach, in which bandwidth reuse is not allowed. For the simulated range of network loads, the maximum (minimum) blocking probability reduction obtained by our proposal is approximately 48% (10%) in the European topology, 46% (7%) in the NSFNET topology, and 32% (6%) in the German topology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207907 | PMC |
http://dx.doi.org/10.3390/s24123965 | DOI Listing |
Materials (Basel)
January 2025
School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
Mechanoluminescent (ML) materials emit light by trapping and releasing charge carriers under mechanical stress. However, previous studies do not fully reveal the relationship between emitting light intensity and mechanical stress, thereby affecting the accuracy of stress measurement. This study addresses this gap by systematically investigating ML cylinders with various sizes and loading paths using theoretical analysis and simulations, focusing on the maximum contact stress, equivalent stress distribution, and the relationship between the strain energy density and light intensity at the point of maximum contact stress.
View Article and Find Full Text PDFOsteoarthritis Cartilage
January 2025
College of Engineering, Boston University, Boston, MA.
Objective: The diagnosis of early osteoarthritis when therapeutic interventions may be most effective at reversing cartilage degeneration presents a clinical challenge. We describe a Raman arthroscopic probe and spectral analysis that measures biomarkers reflective of the content of predominant cartilage ECM constituents-glycosaminoglycans (GAG), collagen, water-essential to cartilage function. We compare the capability of Raman-probe-derived biomarkers to predict functional properties of cartilage to quantitative MRI and histopathology assessments.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
College of Optometry, University of Houston, Houston, TX, USA.
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.
Bioengineering (Basel)
January 2025
Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
Terahertz (THz) waves reside in the electromagnetic spectrum between the microwave and infrared bands. In recent decades, THz technology has demonstrated its potential for biomedical applications. With the highly unique characteristics of THz waves, such as the high sensitivity to water and optimal spatial resolution coupled with the characteristics of the human cornea, such as its high water content, THz technology has been explored as a potential modality to assess corneas and corneal diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Applied Optics Laboratory, Institute of Optics and Precision Mechanics, University Setif 1, Setif, 19000, Algeria.
This prediction evaluates the different physical characteristics of magnetic materials XFeO (X = Mg, Ca and Sr) by using density functional theory (DFT). The generalized gradient approximation (GGA) approach is chosen to define the exchange and correlation potential. The structural study of the compounds XFeO (X = Mg, Ca and Sr) shows that the ferromagnetic phase is the more stable ground state, where all the parameters of the network are given at equilibrium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!