In a dynamic production processes, mechanical degradation poses a significant challenge, impacting product quality and process efficiency. This paper explores a novel approach for monitoring degradation in the context of viscose fiber production, a highly dynamic manufacturing process. Using causal discovery techniques, our method allows domain experts to incorporate background knowledge into the creation of causal graphs. Further, it enhances the interpretability and increases the ability to identify potential problems via changes in causal relations over time. The case study employs a comprehensive analysis of the viscose fiber production process within a prominent textile industry, emphasizing the advantages of causal discovery for monitoring degradation. The results are compared with state-of-the-art methods, which are not considered to be interpretable, specifically LSTM-based autoencoder, UnSupervised Anomaly Detection on Multivariate Time Series (USAD), and Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data (TranAD), showcasing the alignment and validation of our approach. This paper provides valuable information on degradation monitoring strategies, demonstrating the efficacy of causal discovery in dynamic manufacturing environments. The findings contribute to the evolving landscape of process optimization and quality control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207435 | PMC |
http://dx.doi.org/10.3390/s24123728 | DOI Listing |
COVID-19 vaccination is the most effective strategy for preventing severe disease and death. Inactivated vaccines are the most accessible type of COVID-19 vaccines in developing countries. Several studies, including work from our group, have demonstrated that the third dose (booster vaccination) of inactivated COVID-19 vaccine induces robust humoral and cellular immune responses.
View Article and Find Full Text PDFOncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Oral submucous fibrosis (OSF) is a chronic, progressive, and fibrotic condition of the oral mucosa that carries an elevated risk of malignant transformation. We aimed to identify and validate novel genes associated with the regulation of epithelial-to-mesenchymal transition (EMT) in OSF. Genes regulating EMT were identified through differential gene expression analysis, using a LogFC threshold of -1 and + 1 and a padj value < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!