Association between Unsaturated Fatty Acid-Type Diet and Systemic Lupus Erythematosus: A Systematic Review with Meta-Analyses.

Nutrients

Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.

Published: June 2024

Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects multiple organ systems, with a higher prevalence among women in their reproductive years. The disease's multifactorial etiology involves genetic, environmental, and hormonal components. Recent studies have highlighted the potential impact of dietary factors, particularly unsaturated fatty acids, on the modulation of SLE due to their anti-inflammatory properties. This meta-analysis aims to evaluate the association between unsaturated fatty acid consumption and the risk, progression, and clinical manifestations of SLE, providing evidence-based guidance for dietary management.

Methods: We conducted a comprehensive search across major medical databases up to January 2024, focusing on studies that examined the intake of unsaturated fatty acids and the impact of such intake on SLE. Using the PICOS (population, intervention, comparator, outcomes, study design) framework, we included randomized controlled trials and case-control studies, assessing outcomes such as SLE activity, measured by SLE Disease Activity Index (SLEDAI) or the British Isles Lupus Assessment Group (BILAG) index, inflammation biomarkers. Studies were analyzed using either a fixed- or random-effects model based on heterogeneity ( statistic), with sensitivity analyses performed to assess the robustness of the findings.

Results: Our search included 10 studies, encompassing a wide variety of designs and populations. The meta-analysis showed that a diet rich in unsaturated fatty acids is significantly associated with a reduction in SLEDAI scores (pooled SMD) of -0.36, 95% CI: -0.61 to -0.11, = 0.007, indicating a beneficial effect on disease activity. Additionally, we found that unsaturated fatty acid intake has a significant impact on HDL levels, suggesting a positive effect on lipid profiles. However, no significant effects were observed on levels of the inflammatory marker IL-6 or other lipid components (LDL and cholesterol). With minimal heterogeneity among studies ( ≤ 15%), sensitivity analysis confirmed the stability and reliability of these results, highlighting the potential role of unsaturated fatty acids in SLE management.

Conclusions: This meta-analysis suggests that dietary intake of unsaturated fatty acids may play a positive role in reducing SLE activity and may significantly affect HDL levels without having significant effects on inflammation markers or other lipid profiles. These findings support the inclusion of unsaturated fatty acids in the dietary management of SLE patients, although further research is required to refine dietary recommendations and explore the mechanisms underlying these associations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206385PMC
http://dx.doi.org/10.3390/nu16121974DOI Listing

Publication Analysis

Top Keywords

unsaturated fatty
36
fatty acids
24
fatty
9
sle
9
association unsaturated
8
systemic lupus
8
lupus erythematosus
8
unsaturated
8
fatty acid
8
intake unsaturated
8

Similar Publications

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Population variation in fatty acid composition and response to climatic factors in Malania oleifera Chun et S.K. Lee.

BMC Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, 100093, China.

Malania oleifera Chun et S.K. Lee is a woody oil tree species and is rich in nervonic acid, which is associated with brain development.

View Article and Find Full Text PDF

Agronomic characteristics, mineral nutrient content, antioxidant capacity, biochemical composition, and fatty acid profile of Iranian pistachio (Pistacia vera L.) cultivars.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.

Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.

View Article and Find Full Text PDF

The demonization of seed oils "campaign" has become stronger over the decades. Despite the dietary guidelines provided by nutritional experts recommending the limiting of saturated fat intake and its replacement with unsaturated fat-rich food sources, some health experts ignore the dietary guidelines and the available human research evidence, suggesting the opposite. As contrarians, these individuals could easily shift public opinion so that dietary behavior moves away from intake of unsaturated fat-rich food sources (including seed oils) toward saturated fats, which is very concerning.

View Article and Find Full Text PDF

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!