(1) Background: The aim was to validate an AI-based system compared to the classic method of reading ultrasound images of the rectus femur (RF) muscle in a real cohort of patients with disease-related malnutrition. (2) Methods: One hundred adult patients with DRM aged 18 to 85 years were enrolled. The risk of DRM was assessed by the Global Leadership Initiative on Malnutrition (GLIM). The variation, reproducibility, and reliability of measurements for the RF subcutaneous fat thickness (SFT), muscle thickness (MT), and cross-sectional area (CSA), were measured conventionally with the incorporated tools of a portable ultrasound imaging device (method A) and compared with the automated quantification of the ultrasound imaging system (method B). (3) Results: Measurements obtained using method A (i.e., conventionally) and method B (i.e., raw images analyzed by AI), showed similar values with no significant differences in absolute values and coefficients of variation, 58.39-57.68% for SFT, 30.50-28.36% for MT, and 36.50-36.91% for CSA, respectively. The Intraclass Correlation Coefficient (ICC) for reliability and consistency analysis between methods A and B showed correlations of 0.912 and 95% CI [0.872-0.940] for SFT, 0.960 and 95% CI [0.941-0.973] for MT, and 0.995 and 95% CI [0.993-0.997] for CSA; the Bland-Altman Analysis shows that the spread of points is quite uniform around the bias lines with no evidence of strong bias for any variable. (4) Conclusions: The study demonstrated the consistency and reliability of this new automatic system based on machine learning and AI for the quantification of ultrasound imaging of the muscle architecture parameters of the rectus femoris muscle compared with the conventional method of measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206908PMC
http://dx.doi.org/10.3390/nu16121806DOI Listing

Publication Analysis

Top Keywords

ultrasound imaging
16
imaging system
8
muscle architecture
8
architecture parameters
8
parameters rectus
8
rectus femoris
8
disease-related malnutrition
8
quantification ultrasound
8
method
6
ultrasound
5

Similar Publications

Percutaneous treatment of de Quervain's disease using Sono-Instruments®: A feasibility study.

J Hand Surg Eur Vol

January 2025

Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Université Libre de Bruxelles ULB, Brussels, Belgium.

We investigated the safety and effectiveness of percutaneous release for de Quervain's disease using Sono-Instruments® in cadaveric specimens. The mean procedure duration was 4 minutes, and complete release was achieved in all specimens.

View Article and Find Full Text PDF

Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.

View Article and Find Full Text PDF

Background: Pancreatic cancer remains one of the most lethal malignancies worldwide, with a poor prognosis often attributed to late diagnosis. Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.

Aim: To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.

View Article and Find Full Text PDF

Background: Microvascular invasion (MVI) is a significant risk factor for recurrence and metastasis following hepatocellular carcinoma (HCC) surgery. Currently, there is a paucity of preoperative evaluation approaches for MVI.

Aim: To investigate the predictive value of texture features and radiological signs based on multiparametric magnetic resonance imaging in the non-invasive preoperative prediction of MVI in HCC.

View Article and Find Full Text PDF

Determining the differential diagnosis of small scalp cysts identified on a fetus is difficult. In particular, many physicians have difficulty differentiating small meningoceles from small scalp cysts during the prenatal period. Volume contrast imaging increases contrast between tissues, thereby allowing an enhanced view of target structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!