Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin- D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207439PMC
http://dx.doi.org/10.3390/plants13121710DOI Listing

Publication Analysis

Top Keywords

patulin derivatives
8
derivatives
6
patulin
5
structure-based design
4
design virtual
4
virtual screening
4
screening discovery
4
discovery novel
4
novel patulin
4
derivatives biogenic
4

Similar Publications

Preparation of chitin-derived hierarchical porous materials and their application and mechanism in adsorption of mycotoxins.

Int J Biol Macromol

December 2024

State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China. Electronic address:

In this study, the hierarchical porous materials for adsorbing mycotoxins were prepared by one-step carbonization-activation method using potassium permanganate (KMnO) and chitin as activators and carbon source, respectively. The hierarchical porous materials had different specific surface area and pore distribution owing to different carbonization temperatures. In this paper, the effects of pH, time and temperature of adsorption as well as the concentration of patulin on the adsorption characteristics were systematically investigated.

View Article and Find Full Text PDF

Apples and apple-derived products can be contaminated with patulin and, to a lesser extent, aflatoxin B1 and fumonisins. Fruits were collected from Golden Delicious and Imperatore trees in three orchards in Veneto, Northern Italy, and analysed for the presence of fungi and mycotoxins. Sampling and analyses were also carried out from storage bins to final puree tanks along the apple-puree production chain.

View Article and Find Full Text PDF

Patulin (PAT), a notorious mycotoxin widely found in fruits and their derived products, poses serious health risks to humans and animals due to its high toxicity. Biodegradation based on microbial enzymes has shown broad application prospects in controlling PAT contamination due to its environmental friendliness, high efficiency, strong specificity, and mild conditions of action. Bacillus subtilis is a cosmopolitan probiotic bacterium with an extensive enzymatic profile, which could serve as a valuable resource for the effective production of a range of enzymes utilized in various industrial processes and production applications.

View Article and Find Full Text PDF

Identification and Application of Novel Patulin-Degrading Enzymes from 168.

J Agric Food Chem

November 2024

College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Patulin (PAT), a toxic secondary metabolite produced mainly by species that frequently contaminates fruit and fruit-derived products, poses serious health risks to humans and animals. In the present study, three short-chain dehydrogenases/reductases (SDRs) with PAT-degrading ability, designated SDR1, SDR2, and SDR3, were identified from the genome of 168. SDR1 and SDR2 showed powerful PAT elimination abilities, which can completely convert PAT to nontoxic E-ascladiol.

View Article and Find Full Text PDF

The conducive conditions of warm and humid climates can facilitate mold proliferation and subsequent mycotoxin production during food processing and distribution, thereby posing a potential risk to consumer health. However, there exists a significant lack of research regarding the diversity of molds and the presence of ochratoxin A (OTA) and patulin (PAT) in food products available in the Yangzhou market. This study was conducted to assess OTA contamination levels and fungal presence in 57 cereal-based food samples, as well as PAT contamination levels and fungal presence in 50 types of foods, including apples, hawthorn berries, pears, and their derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!