Integrated Transcriptome and Metabolome Analysis Reveals Molecular Mechanisms Underlying Resistance to Root Rot.

Plants (Basel)

Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory, National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.

Published: June 2024

AI Article Synopsis

  • Soybean root rot (PRR) significantly affects production, and understanding the resistance mechanisms through genes, particularly the NLR gene family, is essential yet limited.
  • Transgenic soybean plants were created to overexpress specific genes, allowing researchers to investigate changes at various time points post-infection in both resistant and susceptible lines.
  • Analysis of gene expression and metabolite differences pointed to key pathways involved in resistance, revealing that isoflavone biosynthesis may play a critical role in enhancing soybean's defense against PRR, thus aiding future breeding efforts.

Article Abstract

Soybean production is significantly impacted by root rot (PRR), which is caused by . The nucleotide-binding leucine-rich repeat (NLR) gene family plays a crucial role in plant disease resistance. However, current understanding of the function of soybean genes in resistance to PRR is limited. To address this knowledge gap, transgenic soybean plants overexpressing the gene () were generated to elucidate the molecular mechanism of resistance. Here, transcript changes and metabolic differences were investigated at three time points (12, 24, and 36 h) after infection in hypocotyls of two soybean lines, Dongnong 50 (susceptible line, WT) and overexpression line (resistant line, OE). Based on the changes in differentially expressed genes (DEGs) in response to infection in different lines and at different time points, it was speculated that HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), valine, leucine, and isoleucine degradation, and phytohormone signaling may be involved in the defense response of soybean to at the transcriptome level by GO term and KEGG pathway enrichment analysis. Differentially accumulated metabolites (DAMs) analysis revealed that a total of 223 and 210 differential metabolites were identified in the positive ion (POS) and negative ion (NEG) modes, respectively. An integrated pathway-level analysis of transcriptomics (obtained by RNA-seq) and metabolomics data revealed that isoflavone biosynthesis was associated with disease resistance. This work provides valuable insights that can be used in breeding programs aiming to enhance soybean resistance against PRR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207509PMC
http://dx.doi.org/10.3390/plants13121705DOI Listing

Publication Analysis

Top Keywords

root rot
8
disease resistance
8
resistance prr
8
time points
8
resistance
7
soybean
6
integrated transcriptome
4
transcriptome metabolome
4
analysis
4
metabolome analysis
4

Similar Publications

Phytophthora root and stem rot caused by () is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of (soybean) to infection.

View Article and Find Full Text PDF

spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.

View Article and Find Full Text PDF

Effect of Selenium, Copper and Manganese Nanocomposites in Arabinogalactan Matrix on Potato Colonization by Phytopathogens and .

Plants (Basel)

December 2024

Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, 37077 Göttingen, Germany.

The effect of chemically synthesized nanocomposites (NCs) of selenium (Se/AG NC), copper oxide (Cu/AG NC) and manganese hydroxide (Mn/AG NC), based on the natural polymer arabinogalactan (AG), on the processes of growth, development and colonization of potato plants in vitro was studied upon infection with the causative agent of potato blackleg-the Gram-negative bacterium -and the causative agent of ring rot-the Gram-positive bacterium (). It was shown that the infection of potatoes with reduced the root formation of plants and the concentration of pigments in leaf tissues. The treatment of plants with Cu/AG NC before infection with stimulated leaf formation and increased the concentration of pigments in them.

View Article and Find Full Text PDF

is a plant of considerable economic importance in China. However, root rot poses a significant threat to its yield and quality, leading to substantial economic losses. The disparities in rhizosphere soil fungal communities between healthy and root-rot-affected have not been thoroughly explored.

View Article and Find Full Text PDF

Development of Green Fluorescent Protein-Tagged Strains of via PEG-Mediated Genetic Transformation.

Microorganisms

November 2024

Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210000, China.

is recognized as the causative agent of root rot in many forestry and agricultural plants. In recent years, root rot and foliage blight caused by have become widespread and severe in China, particularly affecting . The infection mechanism of remains a pressing area for research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!