Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for plant growth. The results showed that the survival rate of the HAES788 variety as rootstock and Guire No. 1 as scion was the highest, reaching 96%. The optimal grafting time in December was better than that in March. Furthermore, among 16 substrate formulations, T12, T13, T15, and T16 had advantages of agglomerated soil and more well-developed root systems compared to the CK made of loess. The plant height, stem diameter, leaf length, leaf width, and dry weight of the aboveground and underground parts of the grafted seedlings planted in these substrate formulations were significantly higher than those plants planted in the CK. In addition, the substrate formulations T12, T13, T15, and T16 significantly improved the organic matter, total nitrogen, and total potassium content of the substrate soils, but little improvement was observed for total phosphorus content after 13 months. Overall, macadamia grafting times are best in December, with HAES788 and Guire No. 1 being the best rootstock and scion. The optimal substrate formulations are T12, T13, T15, and T16. This study provides a solid foundation for the production of high-quality macadamia plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207545 | PMC |
http://dx.doi.org/10.3390/plants13121700 | DOI Listing |
J Colloid Interface Sci
January 2025
UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:
Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
Effective microorganisms pose a great potential in wastewater treatment. In the present study, effective microorganisms' formulations were developed using different organic substrates that support the growth of more beneficial microorganisms for sewage treatment. Based on the metagenomic analysis and biochemical profile information, the fish waste-based effective microorganisms' formulation was identified as the effective formulation.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
United States Department of Agriculture, Agricultural Research Service, Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA.
House flies, Musca domestica L. (Diptera: Muscidae), are commonplace pests in both urban and agricultural settings. The potential for house flies as vectors of many disease-causing organisms to humans and animals, coupled with their incessant nuisance behaviors toward these hosts has resulted in a desire to manage their populations.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian, Beijing 100091, China.
Wood-decay fungi, including white- and brown-decay fungi, are well known for their ability to degrade lignin and cellulose, respectively. The combined use of these fungi can increase the decomposition of woody substrates. Research has indicated that these fungi also exhibit inhibitory effects against , the causative agent of pine wilt disease (PWD).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Stockholm, Sweden.
Choline-acetyltransferase (ChAT) is the key cholinergic enzyme responsible for the biosynthesis of acetylcholine (ACh), a crucial signaling molecule with both canonical neurotransmitter function and auto- and paracrine signaling activity in non-neuronal cells, such as lymphocytes and astroglia. Cholinergic dysfunction is linked to both neurodegenerative and inflammatory diseases. In this study, we investigated a serendipitous observation, namely that the catalytic rate of human recombinant ChAT (rhChAT) protein greatly differed in buffered solution in the presence and absence of Triton X-100 (TX100).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!