is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of against . The antimicrobial effect was determined using an ethanolic extract of . The surface charge of the bacterial membrane, the K leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against . The MIC extract increased the bacterial surface charge by 1.4 times and the K concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that affects membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207523PMC
http://dx.doi.org/10.3390/plants13121671DOI Listing

Publication Analysis

Top Keywords

antimicrobial antibiofilm
12
metabolic activity
12
mic extract
12
antibiofilm potential
8
biofilm formation
8
bacterial biofilms
8
surface charge
8
antimicrobial
6
bacterial
6
extract
5

Similar Publications

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Proteomic Profiling and Pre-Clinical Efficacy of Antimicrobial Lithium Complex and Colistin Combination against Multi-drug Resistant Acinetobacter baumannii.

Microb Pathog

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:

Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Anti-Biofilm Agents to Overcome Antibiotic Resistance.

Pharmaceuticals (Basel)

January 2025

AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France.

is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients.

View Article and Find Full Text PDF

Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!