Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (), an Endemic Species from the Southwest Sichuan Basin, China.

Plants (Basel)

Co-Innovation Center for the Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Published: June 2024

The mountainous regions of southwest China are recognized as pivotal centers for the origin and evolution of species. Baoxing Osmanthus ( Rehder), a rare and endemic species known for its spring blooms, is sparsely distributed within the high altitude evergreen broad-leaved forests surrounding the southwestern Sichuan Basin. However, persistent anthropogenic disturbances and habitat fragmentation have precipitated a significant decline in its natural population size, leading to the erosion of genetic resources. To assess the genetic status of and formulate effective conservation strategies, we conducted sampling across ten wild populations, totaling 148 individuals in their natural habitats. We employed two cpDNA fragments ( and ) to elucidate the phylogeographic structure and historical population dynamics. The results revealed low species-level genetic diversity, alongside pronounced regional differentiation among populations ( = 0.812, < 0.05) and a notable phylogeographic structure ( = 0.698 > = 0.396, < 0.05). Notably, genetic variation was predominantly observed among populations (81.23%), with no evidence of recent demographic expansion across the distribution range. Furthermore, divergence dating indicated a timeline of approximately 4.85 Mya, corresponding to the late Miocene to early Pleistocene. This temporal correlation coincided with localized uplift events in the southwestern mountains and heightened Asian monsoons, suggesting pivotal roles for these factors in shaping the current phylogeographic pattern of . These findings support the effective conservation of germplasm and offer insights into the impact of Quaternary climate oscillations on companion species within evergreen broad-leaved forests. They also enhance our understanding of the origin and evolution of these forests in the southwestern mountains, aiding biodiversity conservation efforts in the region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207779PMC
http://dx.doi.org/10.3390/plants13121653DOI Listing

Publication Analysis

Top Keywords

phylogeographic structure
12
population dynamics
8
baoxing osmanthus
8
endemic species
8
sichuan basin
8
origin evolution
8
evergreen broad-leaved
8
broad-leaved forests
8
effective conservation
8
southwestern mountains
8

Similar Publications

Origin and Genealogy of Rare mtDNA Haplotypes Detected in the Serbian Population.

Genes (Basel)

January 2025

Group for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.

: The Balkan Peninsula has served as an important migration corridor between Asia Minor and Europe throughout humankind's history and a refugium during the Last Glacial Maximum. Past migrations such as the Neolithic expansion, Bronze Age migrations, and the settlement of Slavic tribes in the Early Middle Ages, are well known for their impact on shaping the genetic pool of contemporary Balkan populations. They have contributed to the high genetic diversity of the region, especially in mitochondrial DNA (mtDNA) lineages.

View Article and Find Full Text PDF

Pleistocene Refugia Inferred from Molecular Evidence in a Forest-Dwelling Harvestman (Arachnida, Opiliones, Gonyleptidae) Support a Biogeographic Split in Subtropical Argentina.

Integr Zool

January 2025

Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba, Córdoba, Argentina.

This paper addresses the population genetic structure of the forest-dwelling gonyleptid Geraeocormobius sylvarum (Arachnida, Opiliones). Phylogeographic analyses using cytochrome oxidase subunit I (COI) were conducted on 186 individuals from 43 localities in Argentina and Paraguay, arranged into nine operational sectors and defined upon geographic and vegetation features. Given the current environmental uniformity, it was aimed to assess whether molecular fingerprints of G.

View Article and Find Full Text PDF

Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.

View Article and Find Full Text PDF

Phylogeographic analyses reveal recent dispersal and multiple Wolbachia infections of the bright-eyed ringlet Erebia oeme within the European mountain systems.

Sci Rep

January 2025

Senckenberg Deutsches Entomologisches Institut, Systematik und Biogeographie, Eberswalder Str. 90, 15374, Müncheberg, Germany.

The genus Erebia comprises numerous species in Europe. Due to preference of cold environments, most species have disjunct distributions in the European mountain systems. However, their biogeographical patterns may differ significantly.

View Article and Find Full Text PDF

The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!