Chronic wound treatments pose a challenge for healthcare worldwide, particularly for the people in developed countries. Chronic wounds significantly impair quality of life, especially among the elderly. Current research is devoted to novel approaches to wound care by repositioning cardiovascular agents for topical wound treatment. The emerging field of medicinal products' repurposing, which involves redirecting existing pharmaceuticals to new therapeutic uses, is a promising strategy. Recent studies suggest that medicinal products such as sartans, beta-blockers, and statins have unexplored potential, exhibiting multifaceted pharmacological properties that extend beyond their primary indications. The purpose of this review is to analyze the current state of knowledge on the repositioning of cardiovascular agents' use and their molecular mechanisms in the context of wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206936 | PMC |
http://dx.doi.org/10.3390/molecules29122938 | DOI Listing |
Genome Med
January 2025
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
Background: Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China.
Background: Dilated Cardiomyopathy (DCM) is a debilitating cardiovascular disorder that challenges current therapeutic strategies. The exploration of novel drug repositioning opportunities through gene expression analysis offers a promising avenue for discovering effective treatments.
Objective: This study aims to identify potential drug repositioning opportunities and lead compounds for DCM treatment by optimizing gene expression characteristics using published data.
BMC Cardiovasc Disord
January 2025
General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, China.
Background: Catheter-related right atrial thrombus (CRAT) is a severe complication in hemodialysis patients that can lead to catheter dysfunction and pulmonary embolism (PE). However, no standardized treatment strategy currently exists for hemodialysis-related CRAT. This study aims to investigate the efficacy of catheter replacement and antiplatelet therapy in managing hemodialysis CRAT.
View Article and Find Full Text PDFPLoS One
January 2025
Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
March 2024
Department of Physiology, Maastricht University, Universiteitssingel 50, Maastricht 6229ER, Netherlands.
Background: In persistent atrial fibrillation (AF), localized extra-pulmonary vein sources may contribute to arrhythmia recurrences after pulmonary vein isolation. This in-silico study proposes a high-density sequential mapping strategy to localize such sources.
Method: Catheter repositioning was guided by repetitive conduction patterns, moving against the prevailing conduction direction (upstream) toward the sources.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!