Sensors based on MEMS technology, in particular Inertial Measurement Units (IMUs), when installed on vehicles, provide a real-time full estimation of vehicles' state vector (e.g., position, velocity, yaw angle, angular rate, acceleration), which is required for the planning and control of cars' trajectories, as well as managing the in-car local navigation and positioning tasks. Moreover, data provided by the IMUs, integrated with the data of multiple inputs from other sensing systems (such as Lidar, cameras, and GPS) within the vehicle, and with the surrounding information exchanged in real time (vehicle to vehicle, vehicle to infrastructure, or vehicle to other entities), can be exploited to actualize the full implementation of "smart mobility" on a large scale. On the other hand, "smart mobility" (which is expected to improve road safety, reduce traffic congestion and environmental burden, and enhance the sustainability of mobility as a whole), to be safe and functional on a large scale, should be supported by highly accurate and trustworthy technologies based on precise and reliable sensors and systems. It is known that the accuracy and precision of data supplied by appropriately in-lab-calibrated IMUs (with respect to the primary or secondary standard in order to provide traceability to the International System of Units) allow guaranteeing high quality, reliable information managed by processing systems, since they are reproducible, repeatable, and traceable. In this work, the effective responsiveness and the related precision of digital IMUs, under sinusoidal linear and curvilinear motion conditions at 5 Hz, 10 Hz, and 20 Hz, are investigated on the basis of metrological approaches in laboratory standard conditions only. As a first step, in-lab calibrations allow one to reduce the variables of uncontrolled boundary conditions (e.g., occurring in vehicles in on-site tests) in order to identify the IMUs' sensitivity in a stable and reproducible environment. For this purpose, a new calibration system, based on an oscillating rotating table was developed to reproduce the dynamic conditions of use in the field, and the results are compared with calibration data obtained on linear calibration benches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205907PMC
http://dx.doi.org/10.3390/mi15060727DOI Listing

Publication Analysis

Top Keywords

responsiveness precision
8
precision digital
8
digital imus
8
linear curvilinear
8
curvilinear motion
8
motion conditions
8
local navigation
8
navigation positioning
8
vehicle vehicle
8
"smart mobility"
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Associations between heavy metal exposure and vascular age: a large cross-sectional study.

J Transl Med

January 2025

Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.

Background: Heavy metal exposure is an emerging environmental risk factor linked to cardiovascular disease (CVD) through its effects on vascular ageing. However, the relationship between heavy metal exposure and vascular age have not been fully elucidated.

Methods: This cross-sectional study analyzed data from 3,772 participants in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Purposes: We analyzed the acute-phase response in unilateral thyroidectomy by comparing the transoral endoscopic thyroidectomy vestibular approach (TOEVA) with the minimally invasive video-assisted thyroidectomy (MIVAT).

Methods: Patients were randomly assigned to undergo either TOEVA or MIVAT, after we obtained their written informed consent to participate in this study. Blood count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), interleukin-1β (IL-1β), IL-6 and tumor necrosis factor (TNF-) were measured before surgery and then 4, 24, and 48 h after surgery.

View Article and Find Full Text PDF

The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!