Since its invention in the 1960s, one of the most significant evolutions of metal-oxide semiconductor field effect transistors (MOSFETs) would be the 3D version that makes the semiconducting channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During recent decades, the width of fin (W) and the neighboring gate oxide width (t) in FinFETs has shrunk from about 150 nm to a few nanometers. However, both widths seem to have been leveling off in recent years, owing to the limitation of lithography precision. Here, we show that by adapting the Penn model and Maxwell-Garnett mixing formula for a dielectric constant (κ) calculation for nanolaminate structures, FinFETs with two- and three-stage κ-graded stacked combinations of gate dielectrics with SiO, SiN, AlO, HfO, LaO, and TiO perform better against the same structures with their single-layer dielectrics counterparts. Based on this, FinFETs simulated with κ-graded gate oxides achieved an off-state drain current (I) reduced down to 6.45 × 10 A for the AlO: TiO combination and a gate leakage current (I) reaching down to 2.04 × 10 A for the AlO: HfO: LaO combination. While our findings push the individual dielectric laminates to the sub 1 nm limit, the effects of dielectric permittivity matching and κ-grading for gate oxides remain to have the potential to shed light on the next generation of nanoelectronics for higher integration and lower power consumption opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205305 | PMC |
http://dx.doi.org/10.3390/mi15060726 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
This study optimizes V and ΔV in amorphous indium-gallium-zinc-oxide (a-IGZO) field-effect transistors (FETs) by examining the influence of both channel length (L) and Ga composition. It was observed that as the ratio of In: Ga: Zn changed from 1:1:1 to 0.307:0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, Republic of Korea.
pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey.
Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system.
View Article and Find Full Text PDFChem Sci
December 2024
College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction.
View Article and Find Full Text PDFTalanta
December 2024
Nextgen Adaptive Systems Group, Department of Electrical Engineering, National Institute of Technology Patna, Bihar, India. Electronic address:
This study explores a quick, low-cost method to detect Alzheimer's disease (AD) by evaluating the accomplishment of a Gate-Stack (GS) Field Effect Transistor (FET). We investigate Single-Metal (SM), Dual-Metal (DM), and Tri-Metal Double Gate (DG) configurations, where cavities have been created by etching the oxide layer underneath the gate to immobilize grey matter samples collected through Solid-phase microextraction (SPME). Healthy and AD-affected grey matter have different dielectric characteristics at high frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!