A Review of Methods to Modify the PDMS Surface Wettability and Their Applications.

Micromachines (Basel)

Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.

Published: May 2024

Polydimethylsiloxane (PDMS) has attracted great attention in various fields due to its excellent properties, but its inherent hydrophobicity presents challenges in many applications that require controlled wettability. The purpose of this review is to provide a comprehensive overview of some key strategies for modifying the wettability of PDMS surfaces by providing the main traditional methods for this modification and the results of altering the contact angle and other characteristics associated with this property. Four main technologies are discussed, namely, oxygen plasma treatment, surfactant addition, UV-ozone treatment, and the incorporation of nanomaterials, as these traditional methods are commonly selected due to the greater availability of information, their lower complexity compared to the new techniques, and the lower cost associated with them. Oxygen plasma treatment is a widely used method for improving the hydrophilicity of PDMS surfaces by introducing polar functional groups through oxidation reactions. The addition of surfactants provides a versatile method for altering the wettability of PDMS, where the selection and concentration of the surfactant play an important role in achieving the desired surface properties. UV-ozone treatment is an effective method for increasing the surface energy of PDMS, inducing oxidation, and generating hydrophilic functional groups. Furthermore, the incorporation of nanomaterials into PDMS matrices represents a promising route for modifying wettability, providing adjustable surface properties through controlled dispersion and interfacial interactions. The synergistic effect of nanomaterials, such as nanoparticles and nanotubes, helps to improve wetting behaviour and surface energy. The present review discusses recent advances of each technique and highlights their underlying mechanisms, advantages, and limitations. Additionally, promising trends and future prospects for surface modification of PDMS are discussed, and the importance of tailoring wettability for applications ranging from microfluidics to biomedical devices is highlighted. Traditional methods are often chosen to modify the wettability of the PDMS surface because they have more information available in the literature, are less complex than new techniques, and are also less expensive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205751PMC
http://dx.doi.org/10.3390/mi15060670DOI Listing

Publication Analysis

Top Keywords

wettability pdms
12
traditional methods
12
pdms
9
pdms surface
8
wettability applications
8
modifying wettability
8
pdms surfaces
8
oxygen plasma
8
plasma treatment
8
uv-ozone treatment
8

Similar Publications

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Hydrophobic materials have been fabricated by DLP vat photopolymerization of isobornyl acrylate-based resins with chemical modification and/or surface geometry engineering. Fluorinated and polydimethylsiloxane (PDMS)-based acrylic monomers are used for chemical modification and are incorporated into the printed materials. The water wettability was significantly reduced and plateaued with as low as 5% (w/w) of the auxillary hydrophobic monomer.

View Article and Find Full Text PDF

Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish .

Materials (Basel)

December 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO, and perfluorooctane triethoxysilane (PFOTS)-modified TiO.

View Article and Find Full Text PDF

In this study, we propose a method to enhance the friction and wetting properties of aluminum surfaces with micro-/nanostructures by coating them with a PDMS/lubricant composite. Hierarchical micro/nanostructures were formed on the aluminum surface through an etching process, and coating solutions were prepared by mixing xylene and the PDMS/lubricant composites in various ratios. The surface morphology, roughness, and wettability of the coated specimens were analyzed, and their friction and wear characteristics were evaluated under dry and lubricated conditions.

View Article and Find Full Text PDF

Molecular Structure of Omniphobic, Surface-Grafted Polydimethylsiloxane Chains.

Small

November 2024

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada.

The unique surface properties of grafted polydimethylsiloxane (PDMS) chains, particularly their omniphobicity and low friction, are influenced by molecular structure and tethering density. Despite molecularly smoothness and homogeneity, these surfaces exhibit significant variability in wettability and contact angle hysteresis (CAH). This work uncovers the molecular structure of grafted PDMS chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!