Antenna Array Design Based on Low-Temperature Co-Fired Ceramics.

Micromachines (Basel)

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

Published: May 2024

With the continuous development of wireless communication technology, the frequency band of 6G communication systems is moving towards higher frequencies such as millimeter waves and terahertz. In such high-frequency situations, wireless transmission requires antenna modules to be provided with characteristics of miniaturization, high integration, and high gain, which presents new challenges to the development of antenna technology. In this article, a 4 × 4 antenna array using multilayered low-temperature co-fired ceramic is proposed, operating in W-band, with a feeding network based on substrate-integrated waveguide, and an antenna element formed through the combination of a substrate-integrated cavity and surface parasitic patches, which guaranteed the array to possess the advantages of high integration and high gain. Combined with the substrate-integrated waveguide to a rectangular waveguide transition structure designed in the early stage, a physical array with a standard metal rectangular waveguide interface was fabricated and tested. The test results show that the gain of the antenna array is higher than 18 dBi from 88 to 98 GHz, with a maximum of 20.4 dBi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206073PMC
http://dx.doi.org/10.3390/mi15060669DOI Listing

Publication Analysis

Top Keywords

antenna array
12
low-temperature co-fired
8
high integration
8
integration high
8
high gain
8
substrate-integrated waveguide
8
rectangular waveguide
8
antenna
6
array design
4
design based
4

Similar Publications

A silicon photonics optical phased array with a two-dimensional matrix of antennas is experimentally demonstrated in which the unitary antennas are optimized such that light can be emitted over a high fraction of the overall array surface. This design strategy can be used to obtain a low divergence emitted beam containing a significant fraction of the total emitted power, at the expense of a reduced beam steering range. This type of device can be suited to phase front correction in optical wireless communications systems.

View Article and Find Full Text PDF

Fluorescent antennas (FAs) exhibit considerable promise in optical wireless communication (OWC), primarily due to their advantages over conventional optical systems in terms of optical gain and field of view (FoV). This paper presents a COMSOL-based model designed to optimize external light-concentrating structures for FAs, with its accuracy validated through both qualitative and quantitative comparisons. Leveraging refractive index modulation and the conservation of optical étendue, two distinct light-concentrating structures are developed.

View Article and Find Full Text PDF

For the application scenario of multi-user, high-bandwidth laser communication in satellite internet, this paper proposes a spatiotemporal vector optimization algorithm to achieve high energy utilization in arbitrary multi-beam generation using a liquid crystal optical phased array antenna. The core components of this method involve optimizing phase offsets and power coefficients through iterative processes to achieve precise beam shaping and efficient energy distribution among multiple beams. This approach overcomes the single-link limitation of traditional laser terminals and resolves challenges such as low radiation efficiency and substantial power loss in multi-beam generation systems utilizing passive phased array antennas.

View Article and Find Full Text PDF

Laser communications (lasercom) can enable more efficient and higher bandwidth communications than conventional radio frequency (RF) systems, but requires more sophisticated pointing and tracking (PAT) systems to acquire and maintain links. Liquid lens arrays can provide compact, nonmechanical beam steering as an alternative to fast-steering mirrors and mechanical gimbals. An array of two liquid lenses offset in perpendicular axes along with a third on-axis lens in the array are used for beam steering and divergence control, respectively.

View Article and Find Full Text PDF

Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR.

Nat Commun

January 2025

State Key Laboratory for Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Ningbo Innovation Center, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

The frequency-modulated continuous-wave (FMCW) technology combined with optical phased array (OPA) is promising for the all-solid-state light detection and ranging (LiDAR). We propose and experimentally demonstrate a silicon integrated OPA combined with an optical frequency microcomb for parallel LiDAR system. For realizing the parallel wavelengths emission consistent with Rayleigh criterion, the wide waveguide beyond single mode region combined with the bound state in the continuum (BIC) effect is harnessed to obtain an ultra-long optical grating antenna array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!