Vermicompost Supply Enhances Fragrant-Rice Yield by Improving Soil Fertility and Eukaryotic Microbial Community Composition under Environmental Stress Conditions.

Microorganisms

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.

Published: June 2024

Heavy-metal contamination in agricultural soil, particularly of cadmium (Cd), poses serious threats to soil biodiversity, rice production, and food safety. Soil microbes improve soil fertility by regulating soil organic matter production, plant nutrient accumulation, and pollutant transformation. Addressing the impact of Cd toxicity on soil fungal community composition, soil health, and rice yield is urgently required for sustainable rice production. Vermicompost (VC) is an organic fertilizer that alleviates the toxic effects of Cd on soil microbial biodiversity and functionality and improves crop productivity sustainably. In the present study, we examined the effects of different doses of VC (i.e., 0, 3, and 6 tons ha) and levels of Cd stress (i.e., 0 and 25 mg Cd kg) on soil biochemical attributes, soil fungal community composition, and fragrant-rice grain yield. The results showed that the Cd toxicity significantly reduced soil fertility, eukaryotic microbial community composition and rice grain yield. However, the VC addition alleviated the Cd toxicity and significantly improved the soil fungal community; additionally, it enhanced the relative abundance of , , , , and in Cd-contaminated soils. Moreover, the VC addition enhanced the soil's chemical attributes, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), and microbial biomass C and N, compared to non-VC treated soil under Cd toxicity conditions. Similarly, the VC application significantly increased rice grain yield and decreased the Cd uptake in rice. One possible explanation for the reduced Cd uptake in plants is that VC amendments influence the soil's biological properties, which ultimately reduces soil Cd bioavailability and subsequently influences the Cd uptake and accumulation in rice plants. RDA analysis determined that the leading fungal species were highly related to soil environmental attributes and microbial biomass C and N production. However, the relative abundance levels of , , and were strongly associated with soil environmental variables. Thus, the outcomes of this study reveal that the use of VC in Cd-contaminated soils could be useful for sustainable rice production and safe utilization of Cd-polluted soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206116PMC
http://dx.doi.org/10.3390/microorganisms12061252DOI Listing

Publication Analysis

Top Keywords

soil
20
community composition
16
soil fertility
12
rice production
12
soil fungal
12
fungal community
12
grain yield
12
fertility eukaryotic
8
eukaryotic microbial
8
microbial community
8

Similar Publications

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Phosphorus addition diminishes the negative effect of nitrogen addition on methane sink in subtropical forest soils.

Sci Total Environ

January 2025

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:

Increased global nitrogen (N) and phosphorus (P) inputs caused by human activities can significantly impact methane (CH) uptake in terrestrial ecosystems. Forest soils, as the largest CH sink among terrestrial ecosystems, play a crucial role in mitigating global warming. However, the effects of long-term N and P additions on CH sink and the associated microbial mechanisms in subtropical forest soils remain unclear.

View Article and Find Full Text PDF

Mitigating ice sheets and mountain glaciers melt with geoengineering.

Sci Total Environ

January 2025

Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

The inadequacy of current emission reduction measures necessitates exploring innovative approaches to address the critical issue of ice sheet and mountain glacier melting. Geoengineering emerges as a potential solution to mitigate severe cryospheric changes. This review systematically examines geoengineering techniques tailored to ice sheets and mountain glaciers, analyzing their efficacy, risks, and limitations based on existing literature.

View Article and Find Full Text PDF

Prescribed burning effects on carbon and nutrient cycling processes in peatlands of Greater Khingan Mountains, Northeast China.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China. Electronic address:

Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!