With mounting demand for high-quality agricultural products and the relentless exploitation of arable land resources, finding sustainable ways to safely cultivate food crops is becoming ever more important. Here, we investigated the effects of the integrated cropping technique "straw return + intercropping" on the soil aggregates as well as the microbial biomass carbon (MBC) content, enzyme activities and microbial diversity in soils of maize and soybean crops. Our results show that in comparison to straw removal and monoculture, straw return and intercropping increase the rhizosphere's MBC content (59.10%) of soil, along with urease (47.82%), sucrase (57.14%), catalase (16.14%) and acid phosphatase (40.66%) activities as well as the microbial diversity under maize and soybean. Under the same straw treatment, the yield of maize when intercropped surpassed that when grown in monoculture, with the land equivalent ratio of the intercropping treatment under straw return being highest. Overall, the intercropping of maize and soybean is beneficial for the healthy development of sustainable agriculture in the black soil region of northeast China, especially when combined with straw return to fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205681PMC
http://dx.doi.org/10.3390/microorganisms12061108DOI Listing

Publication Analysis

Top Keywords

straw return
16
maize soybean
12
well microbial
8
mbc content
8
microbial diversity
8
straw
6
return
5
maize/soybean intercropping
4
intercropping straw
4
return increases
4

Similar Publications

Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.

View Article and Find Full Text PDF

To evaluate the effects of tillage measure on soil organic carbon (SOC) and influence degree of various factors on relative change rate of SOC at regional scale, we conducted a meta-analysis to investigate the impacts of tillage measures (CK, traditional deep tillage without straw return; NTS, no tillage with straw return; NT, no tillage without straw return; TS, traditional tillage with straw return; SS, subsoiling tillage) on SOC content and influence factors (climate conditions, soil types, cultivation types, and initial soil physicochemical properties) on relative change rate of SOC in dryland wheat fields on the Loess Plateau, based on literatures published during 2000-2023. Results indicated that NT, NTS, SS and TS performed varies positive effect on SOC content in 0-20 cm soil layer compared with CK. In addition, greater enhancement of SOC were obtained in conditions of loessal soil, mid-temperate zone, average annual temperature of ≤10 ℃ and average annual rainfall of ≤500 mm.

View Article and Find Full Text PDF

Straw incorporation can improve soil fertility and soil structure. While numerous studies have explored the immediate impacts of straw return on soil properties and crop production, the legacy effects of long-term straw return remain less understood. In this study, the straw returning soil of a continuous 15 years (SS) and non-straw returning soil (NS) were collected from Dahe Experimental Station of Hebei Academy of Agriculture and Forestry Sciences in China.

View Article and Find Full Text PDF

The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.

View Article and Find Full Text PDF

Depth weakens effects of long-term fertilization on dissolved organic matter chemodiversity in paddy soils.

Sci Total Environ

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China. Electronic address:

Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!