Current diagnostic methods for detecting foodborne pathogens are time-consuming, require sophisticated equipment, and have a low specificity and sensitivity. Magnetic nanoparticles (MNPs) and plasmonic/colorimetric biosensors like gold nanoparticles (GNPs) are cost-effective, high-throughput, precise, and rapid. This study aimed to validate the use of MNPs and GNPs for the early detection of O157:H7, spp., , and in bovine fecal samples. The capture efficiency (CE) of the MNPs was determined by using Typhimurium (ATCC_13311) adjusted at an original concentration of 1.5 × 10 CFU/mL. One (1) mL of this bacterial suspension was spiked into bovine fecal suspension (1 g of fecal sample in 9 mL PBS) and serially diluted ten-fold. DNA was extracted from Typhimurium to determine the analytical specificity and sensitivity/LOD of the GNPs. The results showed that the CE of the MNPs ranged from 99% to 100% and could capture as little as 1 CFU/mL. The LOD of the GNPs biosensor was 2.9 µg/µL. The GNPs biosensor was also tested on DNA from 38 naturally obtained bovine fecal samples. Out of the 38 fecal samples tested, 81.6% (31/38) were positive for spp., 65.8% (25/38) for , 55.3% (21/38) for , and 50% (19/38) for O157:H7. We have demonstrated that MNP and GNP biosensors can detect pathogens or their DNA at low concentrations. Ensuring food safety throughout the supply chain is paramount, given that these pathogens may be present in cattle feces and contaminate beef during slaughter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205818 | PMC |
http://dx.doi.org/10.3390/microorganisms12061069 | DOI Listing |
Animal
December 2024
Farm Animal Behaviour and Husbandry Section, Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen, Germany.
In commercial dairy farming, the majority of cows are dehorned or genetically hornless. It is argued that this reduces the risk of injurious and stressful social conflicts. On the other hand, in horned herds, management and housing may be better adapted to the cows, e.
View Article and Find Full Text PDFVet Parasitol
January 2025
Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina. Electronic address:
Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), "Bruno Ubertini", Diagnostic Section of Piacenza, Italy Via Strada Della Faggiola 1, 29027 Podenzano, PC, Italy.
is diffused worldwide, and subsp. is spread worldwide with many serovars associated with the infection of domestic bovines. The most spread are .
View Article and Find Full Text PDFVet Microbiol
January 2025
Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Research Chair in Biosecurity of Dairy Production, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
Paratuberculosis, a chronic wasting disease affecting domestic and wild ruminants worldwide, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Various diagnostic tests exist for detecting MAP infection; however, none of them possess perfect accuracy to be qualified as a reference standard test, particularly due to their notably low sensitivity.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
Enteropathogenic Escherichia coli (EPEC) is a significant bacterial pathogen that causes infantile diarrhea, particularly in low- and middle-income countries. The lack of a reliable diagnostic method greatly contributes to the increased occurrence and severity of the disease. This study aimed at developing of a cost-effective, rapid, and efficient immunodiagnostic assay for detecting EPEC infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!