Replication of the mitochondrial (mt) genome in filamentous fungi is under-studied, and knowledge is based mainly on data from yeasts and higher eukaryotes. In this study, the mitochondrial DNA polymerase γ (Mip1) of the entomopathogenic fungus is characterized and analyzed with disruption experiments and its in silico interactions with key proteins implicated in mt gene transcription, i.e., mt RNA polymerase Rpo41 and mt transcription factor Mtf1. Disruption of 1 gene and its partial expression influences cell growth, morphology, germination and stress tolerance. A putative in silico model of Mip1-Rpo41-Mtf1, which is known to be needed for the initiation of replication, was proposed and helped to identify potential amino acid residues of Mip1 that interact with the Rpo41-Mtf1 complex. Moreover, the reduced expression of 1 indicates that Mip1 is not required for efficient transcription but only for replication. Functional differences between the Mip1 and its counterparts from and higher eukaryotes are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205540PMC
http://dx.doi.org/10.3390/microorganisms12061052DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
8
dna polymerase
8
polymerase mip1
8
mip1 entomopathogenic
8
entomopathogenic fungus
8
higher eukaryotes
8
mip1
5
identification mitochondrial
4
fungus replication
4
replication mitochondrial
4

Similar Publications

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Herein, we explore the roles of long-chain fatty acid coenzyme A ligase (ACSL) family members in MM.

View Article and Find Full Text PDF

The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on (, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis.

View Article and Find Full Text PDF

The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!