This article presents the effect of the conditions of abrasive compounds on the wear of samples made by different methods. The 28MnB5 steel was used, which is intended for agricultural components, to which two arc and laser coatings were applied. The study included the analysis of microstructure, microhardness, roughness, and tribological experiments on a dedicated stand. The arc coating was found to significantly improve the tribological properties compared to the samples without the coating. Varied wear results were obtained for the laser coating depending on the parameters of the abrasive compound. Studies of the surface roughness of the samples showed that the concentration and pH of the abrasives have a significant effect on the changes in the surface parameters after the tribological tests. The results of the tribological experiments indicated that wear resistance for some of the abrasive mass conditions was improved by the application of heat-applied coatings. In addition, it was found that the power consumption on the stand was the highest for abrasive mass conditions of a 10% moisture content and a pH of 10. For these test conditions, the mass loss was four times higher than for the parameter with W0% and pH7. The energy consumption of the stand was 60 kWh lower for this variant than for the parameter with W10% and pH10. The results of the study have important practical applications that can help in the selection of materials for agricultural machinery components, depending on the abrasive mass conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205101 | PMC |
http://dx.doi.org/10.3390/ma17122849 | DOI Listing |
Sci Rep
January 2025
Department of Geomorphology and Quaternary Geology, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-952, Gdańsk, Poland.
This study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass movement processes.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.
Phthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.
View Article and Find Full Text PDFJ Infect Dev Ctries
November 2024
Department of Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.
Introduction: Mycobacterium marinum is a well-known pathogenic non-tuberculous mycobacterium for skin and soft tissue infections. Infection, often presenting as superficial lesions, is seen after exposure of skin abrasions to contaminated water or infected fish and is known as "swimming pool" or "fish tank" granuloma. This study reported a case of M.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Polyolefin and Catalysis/Shanghai Key Laboratory of Catalysis Technology for Polyolefin, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China.
Ultra-high-molecular-weight polyethylene (UHMWPE) is often considered an ideal reinforcing material due to its extraordinary characteristics like high abrasion resistance, excellent toughness, and chemical stability. However, the poor surface properties have significantly hindered the progress of UHMWPE with high performance. This review is intended to introduce the physicochemical mechanisms of UHMWPE interfacial property modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!