Use of Heat-Applied Coatings to Reduce Wear on Agricultural Machinery Components.

Materials (Basel)

Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland.

Published: June 2024

This article presents the effect of the conditions of abrasive compounds on the wear of samples made by different methods. The 28MnB5 steel was used, which is intended for agricultural components, to which two arc and laser coatings were applied. The study included the analysis of microstructure, microhardness, roughness, and tribological experiments on a dedicated stand. The arc coating was found to significantly improve the tribological properties compared to the samples without the coating. Varied wear results were obtained for the laser coating depending on the parameters of the abrasive compound. Studies of the surface roughness of the samples showed that the concentration and pH of the abrasives have a significant effect on the changes in the surface parameters after the tribological tests. The results of the tribological experiments indicated that wear resistance for some of the abrasive mass conditions was improved by the application of heat-applied coatings. In addition, it was found that the power consumption on the stand was the highest for abrasive mass conditions of a 10% moisture content and a pH of 10. For these test conditions, the mass loss was four times higher than for the parameter with W0% and pH7. The energy consumption of the stand was 60 kWh lower for this variant than for the parameter with W10% and pH10. The results of the study have important practical applications that can help in the selection of materials for agricultural machinery components, depending on the abrasive mass conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205101PMC
http://dx.doi.org/10.3390/ma17122849DOI Listing

Publication Analysis

Top Keywords

abrasive mass
12
mass conditions
12
heat-applied coatings
8
agricultural machinery
8
machinery components
8
tribological experiments
8
consumption stand
8
conditions
5
abrasive
5
coatings reduce
4

Similar Publications

Utilizing UAV and orthophoto data with bathymetric LiDAR in google earth engine for coastal cliff degradation assessment.

Sci Rep

January 2025

Department of Geomorphology and Quaternary Geology, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-952, Gdańsk, Poland.

This study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass movement processes.

View Article and Find Full Text PDF

Theoretical and experimental study on micron-sized SiC micro-abrasives regulating ultrasonic cavitation intensity.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Mechanical Engineering, North University of China, Taiyuan 030051, China; Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China.

Article Synopsis
  • The study explores how adding micron-sized silicon carbide (SiC) micro-abrasives can effectively regulate the intensity of ultrasonic cavitation, which is crucial for various scientific and engineering applications.
  • A mathematical model was created to predict how these micro-abrasives affect cavitation by altering nucleation rates, fluid viscosity, and pressure changes, with experiments confirming the model's predictions.
  • Results showed that lower ultrasonic frequencies and an optimal concentration of SiC (5% mass fraction) significantly boosted cavitation intensity, making this discovery valuable for improving ultrasonic techniques in industrial settings.
View Article and Find Full Text PDF

Phthalates (PAEs) are endocrine-disrupting chemicals that are widely present in everyday life and enter the human body through various pathways. The release of PAEs into the environment through pathways that include leaching, evaporation, abrasion, and the use of personal care products exposes humans to PAEs via ingestion, inhalation, and dermal absorption. Pregnant women, as a particularly vulnerable population, risk adverse newborn growth and development when exposed to PAEs.

View Article and Find Full Text PDF

Introduction: Mycobacterium marinum is a well-known pathogenic non-tuberculous mycobacterium for skin and soft tissue infections. Infection, often presenting as superficial lesions, is seen after exposure of skin abrasions to contaminated water or infected fish and is known as "swimming pool" or "fish tank" granuloma. This study reported a case of M.

View Article and Find Full Text PDF

Surface Modification of Ultra-High-Molecular-Weight Polyethylene and Applications: A Review.

Polymers (Basel)

December 2024

State Key Laboratory of Polyolefin and Catalysis/Shanghai Key Laboratory of Catalysis Technology for Polyolefin, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai 200062, China.

Ultra-high-molecular-weight polyethylene (UHMWPE) is often considered an ideal reinforcing material due to its extraordinary characteristics like high abrasion resistance, excellent toughness, and chemical stability. However, the poor surface properties have significantly hindered the progress of UHMWPE with high performance. This review is intended to introduce the physicochemical mechanisms of UHMWPE interfacial property modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!