Lattice structures have gained attention in engineering due to their lightweight properties. However, the complex geometry of lattice structures and the high melting temperature of metals present significant manufacturing challenges for the large-scale fabrication of these structures. Direct Energy Deposition (DED) methods, such as the Wire Arc Additive Manufacturing (WAAM) technique, appear to be an interesting solution for overcoming these limitations. This study provides a detailed analysis of the manufacturing process of carbon steel lattice structures with auxetic geometry. The study includes thermal analysis using infrared thermography, microstructural characterization through metallography, and mechanical evaluation via hardness and mechanical testing. The findings reveal the significant impact of heat input, thermal cycles, and deposition sequence on the morphology and mechanical properties of the lattice structures. Fast thermal cycles are related to areas with higher hardness values, smaller strut diameters, and porous formations, which shows that controlling heat input and heat dissipation is crucial for optimizing the properties of lattice structures produced using WAAM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204748 | PMC |
http://dx.doi.org/10.3390/ma17122813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!