Generative Adversarial Networks (GANs) are a class of artificial neural networks capable of generating content such as images, text, and sound. For several years already, artificial intelligence algorithms have shown promise as tools in the medical field, particularly in oncology. Generative Adversarial Networks (GANs) represent a new frontier of innovation, as they are revolutionizing artificial content generation, opening opportunities in artificial intelligence and deep learning. This systematic review aims to investigate what the stage of development of such technology is in the field of head and neck surgery, offering a general overview of the applications of such algorithms, how they work, and the potential limitations to be overcome in the future. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed in conducting this study, and the PICOS framework was used to formulate the research question. The following databases were evaluated: MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, ClinicalTrials.gov, ScienceDirect, and CINAHL. Out of 700 studies, only 9 were included. Eight applications of GANs in the head and neck region were summarized, including the classification of craniosynostosis, recognition of the presence of chronic sinusitis, diagnosis of radicular cysts in panoramic X-rays, segmentation of craniomaxillofacial bones, reconstruction of bone defects, removal of metal artifacts from CT scans, prediction of the postoperative face, and improvement of the resolution of panoramic X-rays. Generative Adversarial Networks may represent a new evolutionary step in the study of pathology, oncological and otherwise, making the approach to the disease much more precise and personalized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204848 | PMC |
http://dx.doi.org/10.3390/jcm13123556 | DOI Listing |
Purpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.
Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.
PLoS One
January 2025
Graduate School of Education and Doerr School of Sustainability, Stanford University, Stanford, California, United States of America.
More than two decades of social scientific research has identified the growing network of corporations, think tanks, nonprofits, and advocacy organizations that aim to obstruct climate change action within the United States. Conventional arguments emphasize the role of economic self-interest (e.g.
View Article and Find Full Text PDFComput Biol Chem
January 2025
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
RNA methylation, particularly through m6A modification, represents a crucial epigenetic mechanism that governs gene expression and influences a range of biological functions. Accurate identification of methylation sites is crucial for understanding their biological functions. Traditional experimental methods, however, are often costly and can be influenced by experimental conditions, making machine learning, especially deep learning techniques, a vital tool for m6A site identification.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
National School of Electronics and Telecommunication of Sfax, Sfax rte mahdia, sfax, sfax, 3012, TUNISIA.
Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.
View Article and Find Full Text PDFJ Food Sci
January 2025
School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China.
Whole-grain foods (WGFs) constitute a large part of humans' daily diet, making risk identification of WGFs important for health and safety. However, existing research on WGFs has paid more attention to revealing the effects of a single hazardous substance or various hazardous substances on food safety, neglecting the mutual influence between individual hazardous substances and between hazardous substances and basic information. Therefore, this paper proposes a causal inference of WGFs' risk based on a generative adversarial network (GAN) and Bayesian network (BN) to explore the mutual influence between hazardous substances and basic information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!