A three-dimensional (3D) understanding of muscle attachment footprints became increasingly relevant for musculoskeletal modeling. The established method to project attachments as points ignores patient-specific individuality. Research focuses on investigating certain muscle groups rather than comprehensively studying all muscles spanning a joint. Therefore, we present a reliable method to study several muscle attachments in order to reconstruct the attachment sites in 3D based on CT imaging for future applications in musculoskeletal modeling. For the present feasibility study, 23 knee-related muscle attachments were CT-scanned postmortem from four nonadipose male specimens. For this, the specific muscle attachments were dissected and marked with a barium sulfate containing paint (60 g BaSO in 30 mL water and 10 mL acrylic paint). Subsequently, bone geometries and muscle attachments were reconstructed and evaluated from CT datasets. Bone morphology and footprint variations were studied. Exemplarily, variations were high for pes anserinus insertions (mean 56%) and the origins of M. biceps femoris (mean 54%). In contrast, the origins of the vastus muscles as well as the insertion of the Achilles tendon showed low variation (mean 9% and 13%, respectively). Most attachment sites showed variation exceeding the individuality of bone morphology. In summary, the present data were consistent with the few published studies of specific muscle footprints. Our data shed light on the high variability of muscle attachments, which need to be addressed when studying muscle forces and movements through musculoskeletal modeling. This is the first step to achieving a more profound understanding of muscle morphology to be utilized in numerical simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204608PMC
http://dx.doi.org/10.3390/life14060778DOI Listing

Publication Analysis

Top Keywords

muscle attachments
24
musculoskeletal modeling
12
muscle
11
knee-related muscle
8
feasibility study
8
understanding muscle
8
attachment sites
8
specific muscle
8
bone morphology
8
attachments
7

Similar Publications

Direct Vascular Effects of Angiotensin II (A Systematic Short Review).

Int J Mol Sci

December 2024

Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.

The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.

View Article and Find Full Text PDF

With the remarkable advances in diagnostic ultrasound equipment, there is a growing need for ultrasound diagnosis of muscle and soft tissue injuries in sports injuries. Among these, hamstring strains are often difficult to treat and require early and accurate diagnosis. Injuries to the proximal part of the hamstring often take a long time to heal.

View Article and Find Full Text PDF

Background: Physical exercise is crucial in type 2 diabetes management (T2D), and training in the aquatic environment seems to be a promising alternative due to its physical properties and metabolic, functional, cardiovascular, and neuromuscular benefits. Research on combined training in aquatic and dry-land training environments is scarce, especially in long-term interventions. Thus, this study aims to investigate the effects of combined training in both environments on health outcomes related to the management of T2D patients.

View Article and Find Full Text PDF

Background: The occipital artery (OA) is an important donor artery for intracranial and extracranial bypass surgery, but its path is tortuous, making it difficult to harvest. Part of the traditional intermuscular OA is not covered by muscle and is easily damaged during surgery. Currently, there are few reports on how to protect this segment of the OA.

View Article and Find Full Text PDF

Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity.

Adv Mater

January 2025

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.

Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!