High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram images were used from apical 4-chamber, apical 2-chamber and parasternal long-axis views sampled from 3530 adult patients. The data were extracted from CAMUS and Unity Imaging open-source datasets. For every raw image, additional grayscale block histograms were developed. For block histogram datasets, six classic machine learning algorithms were tested. Moreover, convolutional neural networks based on the pre-trained EfficientNetB4 architecture were developed for raw image datasets. Classic machine learning algorithms predicted image quality with 0.74 to 0.92 accuracy (AUC 0.81 to 0.96), whereas convolutional neural networks achieved between 0.74 and 0.89 prediction accuracy (AUC 0.79 to 0.95). Both approaches are accurate methods of echocardiogram image quality assessment. Moreover, this study is a proof of concept of a novel method of training classic machine learning algorithms on block histograms calculated from raw images. Automated echocardiogram image quality assessment methods may provide additional relevant information to the echocardiographer in daily clinical practice and improve reliability in clinical decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204556 | PMC |
http://dx.doi.org/10.3390/life14060761 | DOI Listing |
Bioinformatics
January 2025
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.
Nutr Bull
January 2025
Queen's University Belfast, Belfast, UK.
Transformative change is needed across the food system to improve health and environmental outcomes. As food, nutrition, environmental and health data are generated beyond human scale, there is an opportunity for technological tools to support multifactorial, integrated, scalable approaches to address the complexities of dietary behaviour change. Responsible technology could act as a mechanistic conduit between research, policy, industry and society, enabling timely, informed decision making and action by all stakeholders across the food system.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China.
BMC Health Serv Res
January 2025
Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.
Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Human Anatomy, Graduate School, Inner Mongolia Medical University, Hohhot, 010010, Inner Mongolia, China.
Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!