The Ebola virus disease (EVD) is an extremely contagious and fatal illness caused by the Ebola virus. Recently, Uganda witnessed an outbreak of EVD, which generated much attention on various social media platforms. To ensure effective communication and implementation of targeted health interventions, it is crucial for stakeholders to comprehend the sentiments expressed in the posts and discussions on these online platforms. In this study, we used deep learning techniques to analyse the sentiments expressed in Ebola-related tweets during the outbreak. We explored the application of three deep learning techniques to classify the sentiments in 8395 tweets as positive, neutral, or negative. The techniques examined included a 6-layer convolutional neural network (CNN), a 6-layer long short-term memory model (LSTM), and an 8-layer Bidirectional Encoder Representations from Transformers (BERT) model. The study found that the BERT model outperformed both the CNN and LSTM-based models across all the evaluation metrics, achieving a remarkable classification accuracy of 95%. These findings confirm the reported effectiveness of Transformer-based architectures in tasks related to natural language processing, such as sentiment analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204680PMC
http://dx.doi.org/10.3390/life14060708DOI Listing

Publication Analysis

Top Keywords

deep learning
12
sentiment analysis
8
social media
8
ebola virus
8
sentiments expressed
8
learning techniques
8
bert model
8
analysis social
4
media data
4
data ebola
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!