: Age-related macular degeneration (AMD) is a complex and multifactorial condition that can lead to permanent vision loss once it progresses to the neovascular exudative stage. This review aims to summarize the use of deep learning in neovascular AMD. : Pubmed search. : Deep learning has demonstrated effectiveness in analyzing structural OCT images in patients with neovascular AMD. This review outlines the role of deep learning in identifying and measuring biomarkers linked to an elevated risk of transitioning to the neovascular form of AMD. Additionally, deep learning techniques can quantify critical OCT features associated with neovascular AMD, which have prognostic implications for these patients. Incorporating deep learning into the assessment of neovascular AMD eyes holds promise for enhancing clinical management strategies for affected individuals. : Several studies have demonstrated effectiveness of deep learning in assessing neovascular AMD patients and this has a promising role in the assessment of these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11205843PMC
http://dx.doi.org/10.3390/medicina60060990DOI Listing

Publication Analysis

Top Keywords

deep learning
28
neovascular amd
20
neovascular
8
learning neovascular
8
age-related macular
8
macular degeneration
8
demonstrated effectiveness
8
deep
7
amd
7
learning
6

Similar Publications

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!