: Congenital kyphosis is a spinal deformity that arises from the inadequate anterior development or segmentation of the vertebrae in the sagittal plane during the initial embryonic stage. Consequently, this condition triggers atypical spinal growth, leading to the manifestation of deformity. Concurrently, other congenital abnormalities like renal or cardiac defects within the gastrointestinal tract may co-occur with spinal deformities due to their shared formation timeline. In light of the specific characteristics of the deformity, the age range of the patient, deformity sizes, and neurological conditions, surgical intervention emerges as the optimal course of action for such cases. The selection of the appropriate surgical approach is contingent upon the specific characteristics of the anomaly. : This investigation illustrates the utilization of a surgical posterior-only strategy for correcting pediatric congenital kyphoscoliosis through the implementation of a vertebral column resection method along with spine reconstruction employing a mesh cage. The individual in question, a 16-year-old female, exhibited symptoms such as a progressive rib hump, shoulder asymmetry, and back discomfort. Non-invasive interventions like bracing proved ineffective, leading to the progression of the spinal curvature. After the surgical procedure, diagnostic imaging displayed a marked enhancement across all three spatial dimensions. After a postoperative physical assessment, it was noted that the patient experienced significant enhancements in shoulder alignment and rib hump prominence, with no discernible neurological or other adverse effects. : Surgical intervention is considered the optimal approach for addressing such congenital anomalies. Typically, timely surgical intervention leads to favorable results and has the potential to halt the advancement of deformity and curvature enlargement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206005 | PMC |
http://dx.doi.org/10.3390/medicina60060897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!