Subclinical mastitis is a common and economically significant disease that affects dairy sheep production. Thermal imaging presents a promising avenue for non-invasive detection, but existing methodologies often rely on simplistic temperature differentials, potentially leading to inaccurate assessments. This study proposes an advanced algorithmic approach integrating thermal imaging processing with statistical texture analysis and t-distributed stochastic neighbor embedding (t-SNE). Our method achieves a high classification accuracy of 84% using the support vector machines (SVM) algorithm. Furthermore, we introduce another commonly employed evaluation metric, correlating thermal images with commercial California mastitis test (CMT) results after establishing threshold conditions on statistical features, yielding a sensitivity (the true positive rate) of 80% and a specificity (the true negative rate) of 92.5%. The evaluation metrics underscore the efficacy of our approach in detecting subclinical mastitis in dairy sheep, offering a robust tool for improved management practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200668 | PMC |
http://dx.doi.org/10.3390/ani14121797 | DOI Listing |
Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, 213000, Jiangsu, China.
Background: Microwave ablation is a new, minimally invasive technique for the treatment of thyroid nodules. Hyperthyroidism due to destructive thyroiditis is a known risk of microwave ablation, though it occurs in only a minority of cases. We report a rare case of a patient diagnosed with Graves' disease nearly six months after undergoing microwave ablation of a thyroid nodule.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang-si, Korea.
Background: Anatomical liver resection has been altered by a deeper understanding of the internal structure of the liver, highlighting the importance of the intersegmental plane, a region lacking Glissonean branches. These insights have enabled a novel surgical technique focused on the precise detachment of the intersegmental plane, supported by indocyanine green (ICG) fluorescent imaging and robotic platforms, enhancing the precision and safety of liver resection.
Methods: This study involved four patients who underwent robotic left hepatectomy using the Da Vinci Xi system.
Environ Pollut
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.
View Article and Find Full Text PDFAm J Forensic Med Pathol
November 2024
Provincial Forensic Pathology Unit, Ontario Forensic Pathology Service, Toronto, Ontario, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!