A deeper understanding of gas emissions in milk production is crucial for promoting productive efficiency, sustainable resource use, and animal welfare. This paper aims to analyze ammonia and greenhouse gas emissions in dairy farming using bibliometric methods. A total of 187 English-language articles with experimental data from the Scopus and Web of Science databases (January 1987 to April 2024) were reviewed. Publications notably increased from 1997, with the highest number of papers published in 2022. Research mainly focuses on ammonia and methane emissions, including quantification, volatilization, and mitigation strategies. Other gases like carbon dioxide, nitrous oxide, and hydrogen sulfide were also studied. Key institutions include the University of California-Davis and Aarhus University. Bibliometric analysis revealed research evolution, identifying trends, gaps, and future research opportunities. This bibliometric analysis offers insights into emissions, air quality, sustainability, and animal welfare in dairy farming, highlighting areas for innovative mitigation strategies to enhance production sustainability. This research contributes to academia, enhancing agricultural practices, and informing environmental policies. It is possible to conclude that this research is a valuable tool for understanding the evolution of research on gas emissions in dairy cattle facilities, providing guidance for future studies and interventions to promote more sustainable production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201209PMC
http://dx.doi.org/10.3390/ani14121721DOI Listing

Publication Analysis

Top Keywords

bibliometric analysis
12
gas emissions
12
dairy cattle
8
cattle facilities
8
animal welfare
8
emissions dairy
8
dairy farming
8
mitigation strategies
8
emissions
6
assessment ammonia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!