Objectives: The purpose of this study was to evaluate the effectiveness of dental caries segmentation on the panoramic radiographs taken from children in primary dentition, mixed dentition, and permanent dentition with Artificial Intelligence (AI) models developed using the deep learning method.

Methods: This study used 6075 panoramic radiographs taken from children aged between 4 and 14 to develop the AI model. The radiographs included in the study were divided into three groups: primary dentition (n: 1857), mixed dentition (n: 1406), and permanent dentition (n: 2812). The U-Net model implemented with PyTorch library was used for the segmentation of caries lesions. A confusion matrix was used to evaluate model performance.

Results: In the primary dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8525, 0.9128, and 0.8816, respectively. In the mixed dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.7377, 0.9192, and 0.8185, respectively. In the permanent dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8271, 0.9125, and 0.8677, respectively. In the total group including primary, mixed, and permanent dentition, the sensitivity, precision, and F1 scores calculated using the confusion matrix were 0.8269, 0.9123, and 0.8675, respectively.

Conclusions: Deep learning-based AI models are promising tools for the detection and diagnosis of caries in panoramic radiographs taken from children with different dentition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202197PMC
http://dx.doi.org/10.3390/children11060690DOI Listing

Publication Analysis

Top Keywords

permanent dentition
20
confusion matrix
20
panoramic radiographs
16
radiographs children
16
primary dentition
16
mixed dentition
16
sensitivity precision
16
precision scores
16
scores calculated
16
calculated confusion
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!