, commonly known as white murta, is a native Chilean berry with a polyphenol composition that has been underexplored. This study aimed to establish a comprehensive profile of white murta polyphenols using ultra-performance liquid chromatography electrospray ionization Orbitrap mass spectrometry (UPLC-ESI-ORBITRAP MS). Additionally, it compared the efficacy of conventional extraction methods with emerging techniques such as deep eutectic solvent (DES) extraction and hot pressurized water extraction (HPWE). The analysis tentatively identified 107 phenolic compounds (84 of them reported for the first time for this cultivar), including 25 phenolic acids, 37 anthocyanins, and 45 flavonoids. Among the prominent and previously unreported polyphenols are ellagic acid acetyl-xyloside, 3-p-coumaroylquinic acid, cyanidin 3--(6'-caffeoyl-glucoside, and phloretin 2'--xylosyl-glucoside. The study found HPWE to be a promising alternative to traditional extraction of hydroxybenzoic acids, while DES extraction was less effective across all categories. The findings reveal that white murta possesses diverse phenolic compounds, potentially linked to various biological activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200422 | PMC |
http://dx.doi.org/10.3390/antiox13060623 | DOI Listing |
Cancer Discov
January 2025
Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom.
Understanding tumor heterogeneity is a major challenge that was recognized as one of the first Cancer Grand Challenges, with a call to provide solutions to visualize tumor heterogeneity. The Rosetta team took on this challenge, exploiting advances in spatial-omics approaches centered around mass spectrometry imaging to map tumor heterogeneity at the cellular and molecular scales with different levels of resolution. See related article by Bressan et al.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Phys Rev Lett
September 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Phys Rev Lett
September 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
A measurement of time-dependent CP violation in D^{0}→π^{+}π^{-}π^{0} decays using a pp collision data sample collected by the LHCb experiment in 2012 and from 2015 to 2018, corresponding to an integrated luminosity of 7.7 fb^{-1}, is presented. The initial flavor of each D^{0} candidate is determined from the charge of the pion produced in the D^{*}(2010)^{+}→D^{0}π^{+} decay.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.
The LHCb Collaboration measures production of the exotic hadron χ_{c1}(3872) in proton-nucleus collisions for the first time. Comparison with the charmonium state ψ(2S) suggests that the exotic χ_{c1}(3872) experiences different dynamics in the nuclear medium than conventional hadrons, and comparison with data from proton-proton collisions indicates that the presence of the nucleus may modify χ_{c1}(3872) production rates. This is the first measurement of the nuclear modification factor of an exotic hadron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!