The preparation of a novel composite carrier of polydopamine-modified carbon fiber/polyurethane foam (PDA-CF/PUF) was proposed to improve cell immobilization and the fermentation of xylitol, which is an important food sweetener and multifunctional food additive. was immobilized on the composite carrier by adsorption and covalent binding. The properties and immobilization mechanism of the composite carrier and its effect on immobilized cells were investigated. It showed that the modification of PDA enhanced the loading of CF on the PUF surface and the adhesion of cells on the composite carrier surface. Also, the biocompatibility of carriers to cells was improved. In addition, the introduction of PDA increased the active groups on the surface of the carrier, enhanced the hydrophilicity, promoted the cells immobilization, and increased the xylitol yield. It was also found that expression of the related gene XYL1 in cells was significantly increased after the immobilization of the PDA-CF/PUF composite carrier during the fermentation. The PDA-CF/PUF was an immobilized carrier with the excellent biocompatibility and immobilization performance, which has great development potential in the industrial production of xylitol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202654PMC
http://dx.doi.org/10.3390/foods13121911DOI Listing

Publication Analysis

Top Keywords

composite carrier
24
immobilization mechanism
8
novel composite
8
carrier
8
cells immobilization
8
composite
6
cells
6
immobilization
6
preparation immobilization
4
mechanism novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!