The gold standard test for diagnosing dysphagia is the videofluoroscopic swallowing study (VFSS). However, the accuracy of this test varies depending on the specialist's skill level. We proposed a VFSS-based artificial intelligence (AI) web application to diagnose dysphagia. Video from the VFSS consists of multiframe data that contain approximately 300 images. To label the data, the server separated them into frames during the upload and stored them as a video for analysis. Then, the separated data were loaded into a labeling tool to perform the labeling. The labeled file was downloaded, and an AI model was developed by training with You Only Look Once (YOLOv7). Using a utility called SplitFolders, the entire dataset was divided according to a ratio of training (70%), test (10%), and validation (20%). When a VFSS video file was uploaded to an application equipped with the developed AI model, it was automatically classified and labeled as oral, pharyngeal, or esophageal. The dysphagia of a person was categorized as either penetration or aspiration, and the final analyzed result was displayed to the viewer. The following labeling datasets were created for the AI learning: oral ( = 2355), pharyngeal ( = 2338), esophageal ( = 1480), penetration ( = 1856), and aspiration ( = 1320); the learning results of the YOLO model, which analyzed dysphagia using the dataset, were predicted with accuracies of 0.90, 0.82, 0.79, 0.92, and 0.96, respectively. This is expected to help clinicians more efficiently suggest the proper dietary options for patients with oropharyngeal dysphagia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201460 | PMC |
http://dx.doi.org/10.3390/brainsci14060546 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFPain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!