Effects of Seed Oil on Bone Healing Efficiency: An Animal Study.

Int J Mol Sci

School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.

Published: June 2024

Natural products have attracted great interest in the development of tissue engineering. Recent studies have demonstrated that unsaturated fatty acids found in natural plant seed oil may exhibit positive osteogenic effects; however, few in vivo studies have focused on the use of plant seed oil for bone regeneration. The aim of this study is to investigate the effects of seed oil found in () on the osteogenic differentiation of mesenchymal stem cells and bone growth in artificial bone defects in vivo. In this study, Wharton-jelly-derived mesenchymal stem cells (WJMSCs) were co-cultured with seed oil. Cellular osteogenic capacity was assessed using Alizarin Red S staining. Real-time PCR was carried out to evaluate ALP and OCN gene expression. The potential of seed oil to enhance bone growth was assessed using an animal model. Four 6 mm circular defects were prepared at the parietal bone of New Zealand white rabbits. The defects were filled with hydrogel and hydrogel- seed oil, respectively. Quantitative analysis of micro-computed tomography (Micro-CT) and histological images was conducted to compare differences in osteogenesis between oil-treated and untreated samples. Although our results showed no significant differences in viability between WJMSCs treated with and without seed oil, under osteogenic conditions, seed oil facilitated an increase in mineralized nodule secretion and upregulated the expression of ALP and OCN genes in the cells ( < 0.05). In the animal study, both micro-CT and histological evaluations revealed that new bone formation in artificial bone defects treated with seed oil were nearly doubled compared to control defects ( < 0.05) after 4 weeks of healing. Based on these findings, it is reasonable to suggest that seed oil holds promise as a potential candidate for enhancing bone healing efficiency in bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204041PMC
http://dx.doi.org/10.3390/ijms25126749DOI Listing

Publication Analysis

Top Keywords

seed oil
44
oil
11
bone
10
seed
10
effects seed
8
oil bone
8
bone healing
8
healing efficiency
8
animal study
8
tissue engineering
8

Similar Publications

Background: Knowledge about the diet quality among youth who follow different types of plant-based diets is essential to understand whether support is required to ensure a well-planned diet that meets their nutritional needs. This study aimed to investigate how food groups, macronutrient intake, and objective blood measures varied between Norwegian youth following different plant-based diets compared to omnivorous diet.

Methods: Cross-sectional design, with healthy 16-to-24-year-olds (n = 165) recruited from the Agder area in Norway, following a vegan, lacto-ovo-vegetarian, pescatarian, flexitarian or omnivore diet.

View Article and Find Full Text PDF

The comprehensive regulatory network in seed oil biosynthesis.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors.

View Article and Find Full Text PDF

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF

Background: Preserving plant genetic resources is essential for tackling global food security challenges. Effectively meeting future agricultural demands requires comprehensive and efficient assessments of genetic diversity in breeding programs and germplasm from gene banks. This research investigated the diversity of pheno-morphological traits, along with the fatty acid and tocopherol content and composition, in 135 double haploid lines of camelina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!