Selenium is an essential inorganic compound in human and animal nutrition, involved in the proper functioning of the body. As a micronutrient, it actively contributes to the regulation of various metabolic activities, i.e., thyroid hormone, and protection against oxidative stress. However, Se exhibits a narrow concentration window between having a positive effect and exerting a toxic effect. In higher doses, it negatively affects living organisms and causes DNA damage through the formation of free radicals. Increased reactivity of Se anions can also disrupt the integrity and function of DNA-repairing proteins. As the permissible concentration of Se in drinking water is 10 µg/L, it is vital to develop sensitive and robust methods of Se detection in aqueous samples. In this study, for the first time, we proposed a selective aptamer for selenate ion detection, chosen following the SELEX process, and its application in the construction of an electrochemical aptasensor towards SeO ions. Measurement conditions such as the used redox marker and pH value of the measurement solution were chosen. The proposed aptasensor is characterized by good selectivity and an LOD of 1 nM. Conditions for biosensor regeneration and storage were also investigated in this research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11203472 | PMC |
http://dx.doi.org/10.3390/ijms25126660 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFTalanta
January 2025
Medical College, Tianjin University, Tianjin, 300072, China. Electronic address:
Biosens Bioelectron
January 2025
Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom; Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Bath, BA2 7AY, United Kingdom. Electronic address:
Bacteria pose a significant threat to human health as they can cause diseases and outbreaks; therefore rapid, easy, and specific detection of bacteria in a short time is crucial. Various methods such as polymerase chain reaction and enzyme-linked immunosorbent assay have been developed for bacteria detection. However, most of these methods require sample preparation, trained personnel, and 2-4 days for identification.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Conquering surface fouling of sensors caused by nonspecific adsorption and accumulation of foulants in a food matrix is of significance in accurate food safety analysis. Herein, an antifouling electrochemical aptasensor based on a Y-shaped peptide and nanoporous gold (NPG) for aflatoxin B1 detection in milk, tofu, and rice flour was proposed. The self-designed Y-shaped peptide involves an anchoring segment (-C), a support structure (-PPPP-), and an antifouling domain with two branches (-EK(KSRE)DER-) inspired by two bioactive peptides.
View Article and Find Full Text PDFAnal Chem
January 2025
Forensic Research & Development Department, Institute of Environmental Science and Research, PO Box 50348, Porirua 5240, New Zealand.
Electrochemical aptamer-based biosensors (E-aptasensors) are emerging platforms for point-of-care (POC) detection of complex biofluids. Human saliva particularly offers a noninvasive matrix and unprecedented convenience for detecting illicit drugs, such as cocaine. However, the sensitivity of cocaine E-aptasensors is significantly compromised in saliva.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!