Obesity and metabolic syndrome alter serum lipid profiles. They also increase vulnerability to viral infections and worsen the survival rate and symptoms after infection. How serum lipids affect influenza virus proliferation is unclear. Here, we investigated the effects of lysophosphatidylcholines on influenza A virus (IAV) proliferation. IAV particles in the culture medium were titrated using extraction-free quantitative PCR, and viral RNA and protein levels were assessed using real-time PCR and Western blot, respectively. RNA sequencing data were analyzed using PCA and heatmap analysis, and pathway analysis was performed using the KEGG mapper and PathIN tools. Statistical analysis was conducted using SPSS21.0. LPC treatment of THP-1 cells significantly increased IAV proliferation and IAV RNA and protein levels, and saturated LPC was more active in IAV RNA expression than unsaturated LPC was. The functional analysis of genes affected by LPCs showed that the expression of genes involved in IAV signaling, such as suppressor of cytokine signaling 3 (SOCS3), phosphoinositide-3-kinase regulatory subunit 3 (PI3K) and AKT serine/threonine kinase 3 (AKT3), Toll-like receptor 7 (TKR7), and interferon gamma receptor 1 (IFNGR1), was changed by LPC. Altered influenza A pathways were linked with MAPK and PI3K/AKT signaling. Treatment with inhibitors of MAPK or PI3K attenuated viral gene expression changes induced by LPCs. The present study shows that LPCs stimulated virus reproduction by modifying the cellular environment to one in which viruses proliferated better. This was mediated by the MAPK, JNK, and PI3K/AKT pathways. Further animal studies are needed to confirm the link between LPCs from serum or the respiratory system and IAV proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204278PMC
http://dx.doi.org/10.3390/ijms25126538DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
iav proliferation
12
virus reproduction
8
proliferation iav
8
rna protein
8
protein levels
8
iav rna
8
iav
7
lysophosphatidylcholines promote
4
influenza
4

Similar Publications

Association of poultry vaccination with interspecies transmission and molecular evolution of H5 subtype avian influenza virus.

Sci Adv

January 2025

State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China.

The effectiveness of poultry vaccination in preventing the transmission of highly pathogenic avian influenza viruses (AIVs) has been debated, and its impact on wild birds remains uncertain. Here, we reconstruct the movements of H5 subtype AIV lineages among vaccinated poultry, unvaccinated poultry, and wild birds, worldwide, from 1996 to 2023. We find that there is a time lag in viral transmission among different host populations and that movements from wild birds to unvaccinated poultry were more frequent than those from wild birds to vaccinated poultry.

View Article and Find Full Text PDF

Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.

View Article and Find Full Text PDF

Orthohantaviruses are emerging zoonotic viruses that can infect humans via the respiratory tract. There is an unmet need for an in vivo model to study infection of different orthohantaviruses in physiologically relevant tissue and to assess the efficacy of novel pan-orthohantavirus countermeasures. Here, we describe the use of a human lung xenograft mouse model to study the permissiveness for different orthohantavirus species and to assess its utility for preclinical testing of therapeutics.

View Article and Find Full Text PDF

Acute respiratory infections cause significant paediatric morbidity, but for pathogens other than influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, systematic monitoring is not commonly performed. This retrospective analysis of six years of routinely collected respiratory pathogen multiplex PCR testing at a major paediatric hospital in New South Wales Australia, describes the epidemiology, year-round seasonality, and co-detection patterns of 15 viral respiratory pathogens. 32,599 respiratory samples from children aged under 16 years were analysed.

View Article and Find Full Text PDF

One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!